Metamath Proof Explorer


Theorem fourierdlem53

Description: The limit of F ( s ) at ( X + D ) is the limit of F ( X + s ) at D . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem53.1 φF:
fourierdlem53.2 φX
fourierdlem53.3 φA
fourierdlem53.g G=sAFX+s
fourierdlem53.xps φsAX+sB
fourierdlem53.b φB
fourierdlem53.sned φsAsD
fourierdlem53.c φCFBlimX+D
fourierdlem53.d φD
Assertion fourierdlem53 φCGlimD

Proof

Step Hyp Ref Expression
1 fourierdlem53.1 φF:
2 fourierdlem53.2 φX
3 fourierdlem53.3 φA
4 fourierdlem53.g G=sAFX+s
5 fourierdlem53.xps φsAX+sB
6 fourierdlem53.b φB
7 fourierdlem53.sned φsAsD
8 fourierdlem53.c φCFBlimX+D
9 fourierdlem53.d φD
10 1 6 fssresd φFB:B
11 10 fdmd φdomFB=B
12 11 eqcomd φB=domFB
13 12 adantr φsAB=domFB
14 5 13 eleqtrd φsAX+sdomFB
15 2 recnd φX
16 15 adantr φsAX
17 3 sselda φsAs
18 17 recnd φsAs
19 9 adantr φsAD
20 16 18 19 7 addneintrd φsAX+sX+D
21 20 neneqd φsA¬X+s=X+D
22 2 adantr φsAX
23 22 17 readdcld φsAX+s
24 elsng X+sX+sX+DX+s=X+D
25 23 24 syl φsAX+sX+DX+s=X+D
26 21 25 mtbird φsA¬X+sX+D
27 14 26 eldifd φsAX+sdomFBX+D
28 27 ralrimiva φsAX+sdomFBX+D
29 eqid sAX+s=sAX+s
30 29 rnmptss sAX+sdomFBX+DransAX+sdomFBX+D
31 28 30 syl φransAX+sdomFBX+D
32 eqid sAX=sAX
33 eqid sAs=sAs
34 ax-resscn
35 3 34 sstrdi φA
36 32 35 15 9 constlimc φXsAXlimD
37 35 33 9 idlimc φDsAslimD
38 32 33 29 16 18 36 37 addlimc φX+DsAX+slimD
39 31 38 8 limccog φCFBsAX+slimD
40 nfv sφ
41 40 29 5 rnmptssd φransAX+sB
42 cores ransAX+sBFBsAX+s=FsAX+s
43 41 42 syl φFBsAX+s=FsAX+s
44 23 29 fmptd φsAX+s:A
45 fcompt F:sAX+s:AFsAX+s=xAFsAX+sx
46 1 44 45 syl2anc φFsAX+s=xAFsAX+sx
47 4 a1i φG=sAFX+s
48 oveq2 s=xX+s=X+x
49 48 fveq2d s=xFX+s=FX+x
50 49 cbvmptv sAFX+s=xAFX+x
51 50 a1i φsAFX+s=xAFX+x
52 eqidd φxAsAX+s=sAX+s
53 48 adantl φxAs=xX+s=X+x
54 simpr φxAxA
55 2 adantr φxAX
56 3 sselda φxAx
57 55 56 readdcld φxAX+x
58 52 53 54 57 fvmptd φxAsAX+sx=X+x
59 58 eqcomd φxAX+x=sAX+sx
60 59 fveq2d φxAFX+x=FsAX+sx
61 60 mpteq2dva φxAFX+x=xAFsAX+sx
62 47 51 61 3eqtrrd φxAFsAX+sx=G
63 43 46 62 3eqtrd φFBsAX+s=G
64 63 oveq1d φFBsAX+slimD=GlimD
65 39 64 eleqtrd φCGlimD