| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem53.1 |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
fourierdlem53.2 |
|- ( ph -> X e. RR ) |
| 3 |
|
fourierdlem53.3 |
|- ( ph -> A C_ RR ) |
| 4 |
|
fourierdlem53.g |
|- G = ( s e. A |-> ( F ` ( X + s ) ) ) |
| 5 |
|
fourierdlem53.xps |
|- ( ( ph /\ s e. A ) -> ( X + s ) e. B ) |
| 6 |
|
fourierdlem53.b |
|- ( ph -> B C_ RR ) |
| 7 |
|
fourierdlem53.sned |
|- ( ( ph /\ s e. A ) -> s =/= D ) |
| 8 |
|
fourierdlem53.c |
|- ( ph -> C e. ( ( F |` B ) limCC ( X + D ) ) ) |
| 9 |
|
fourierdlem53.d |
|- ( ph -> D e. CC ) |
| 10 |
1 6
|
fssresd |
|- ( ph -> ( F |` B ) : B --> RR ) |
| 11 |
10
|
fdmd |
|- ( ph -> dom ( F |` B ) = B ) |
| 12 |
11
|
eqcomd |
|- ( ph -> B = dom ( F |` B ) ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ s e. A ) -> B = dom ( F |` B ) ) |
| 14 |
5 13
|
eleqtrd |
|- ( ( ph /\ s e. A ) -> ( X + s ) e. dom ( F |` B ) ) |
| 15 |
2
|
recnd |
|- ( ph -> X e. CC ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ s e. A ) -> X e. CC ) |
| 17 |
3
|
sselda |
|- ( ( ph /\ s e. A ) -> s e. RR ) |
| 18 |
17
|
recnd |
|- ( ( ph /\ s e. A ) -> s e. CC ) |
| 19 |
9
|
adantr |
|- ( ( ph /\ s e. A ) -> D e. CC ) |
| 20 |
16 18 19 7
|
addneintrd |
|- ( ( ph /\ s e. A ) -> ( X + s ) =/= ( X + D ) ) |
| 21 |
20
|
neneqd |
|- ( ( ph /\ s e. A ) -> -. ( X + s ) = ( X + D ) ) |
| 22 |
2
|
adantr |
|- ( ( ph /\ s e. A ) -> X e. RR ) |
| 23 |
22 17
|
readdcld |
|- ( ( ph /\ s e. A ) -> ( X + s ) e. RR ) |
| 24 |
|
elsng |
|- ( ( X + s ) e. RR -> ( ( X + s ) e. { ( X + D ) } <-> ( X + s ) = ( X + D ) ) ) |
| 25 |
23 24
|
syl |
|- ( ( ph /\ s e. A ) -> ( ( X + s ) e. { ( X + D ) } <-> ( X + s ) = ( X + D ) ) ) |
| 26 |
21 25
|
mtbird |
|- ( ( ph /\ s e. A ) -> -. ( X + s ) e. { ( X + D ) } ) |
| 27 |
14 26
|
eldifd |
|- ( ( ph /\ s e. A ) -> ( X + s ) e. ( dom ( F |` B ) \ { ( X + D ) } ) ) |
| 28 |
27
|
ralrimiva |
|- ( ph -> A. s e. A ( X + s ) e. ( dom ( F |` B ) \ { ( X + D ) } ) ) |
| 29 |
|
eqid |
|- ( s e. A |-> ( X + s ) ) = ( s e. A |-> ( X + s ) ) |
| 30 |
29
|
rnmptss |
|- ( A. s e. A ( X + s ) e. ( dom ( F |` B ) \ { ( X + D ) } ) -> ran ( s e. A |-> ( X + s ) ) C_ ( dom ( F |` B ) \ { ( X + D ) } ) ) |
| 31 |
28 30
|
syl |
|- ( ph -> ran ( s e. A |-> ( X + s ) ) C_ ( dom ( F |` B ) \ { ( X + D ) } ) ) |
| 32 |
|
eqid |
|- ( s e. A |-> X ) = ( s e. A |-> X ) |
| 33 |
|
eqid |
|- ( s e. A |-> s ) = ( s e. A |-> s ) |
| 34 |
|
ax-resscn |
|- RR C_ CC |
| 35 |
3 34
|
sstrdi |
|- ( ph -> A C_ CC ) |
| 36 |
32 35 15 9
|
constlimc |
|- ( ph -> X e. ( ( s e. A |-> X ) limCC D ) ) |
| 37 |
35 33 9
|
idlimc |
|- ( ph -> D e. ( ( s e. A |-> s ) limCC D ) ) |
| 38 |
32 33 29 16 18 36 37
|
addlimc |
|- ( ph -> ( X + D ) e. ( ( s e. A |-> ( X + s ) ) limCC D ) ) |
| 39 |
31 38 8
|
limccog |
|- ( ph -> C e. ( ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) limCC D ) ) |
| 40 |
|
nfv |
|- F/ s ph |
| 41 |
40 29 5
|
rnmptssd |
|- ( ph -> ran ( s e. A |-> ( X + s ) ) C_ B ) |
| 42 |
|
cores |
|- ( ran ( s e. A |-> ( X + s ) ) C_ B -> ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) = ( F o. ( s e. A |-> ( X + s ) ) ) ) |
| 43 |
41 42
|
syl |
|- ( ph -> ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) = ( F o. ( s e. A |-> ( X + s ) ) ) ) |
| 44 |
23 29
|
fmptd |
|- ( ph -> ( s e. A |-> ( X + s ) ) : A --> RR ) |
| 45 |
|
fcompt |
|- ( ( F : RR --> RR /\ ( s e. A |-> ( X + s ) ) : A --> RR ) -> ( F o. ( s e. A |-> ( X + s ) ) ) = ( x e. A |-> ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) ) |
| 46 |
1 44 45
|
syl2anc |
|- ( ph -> ( F o. ( s e. A |-> ( X + s ) ) ) = ( x e. A |-> ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) ) |
| 47 |
4
|
a1i |
|- ( ph -> G = ( s e. A |-> ( F ` ( X + s ) ) ) ) |
| 48 |
|
oveq2 |
|- ( s = x -> ( X + s ) = ( X + x ) ) |
| 49 |
48
|
fveq2d |
|- ( s = x -> ( F ` ( X + s ) ) = ( F ` ( X + x ) ) ) |
| 50 |
49
|
cbvmptv |
|- ( s e. A |-> ( F ` ( X + s ) ) ) = ( x e. A |-> ( F ` ( X + x ) ) ) |
| 51 |
50
|
a1i |
|- ( ph -> ( s e. A |-> ( F ` ( X + s ) ) ) = ( x e. A |-> ( F ` ( X + x ) ) ) ) |
| 52 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( s e. A |-> ( X + s ) ) = ( s e. A |-> ( X + s ) ) ) |
| 53 |
48
|
adantl |
|- ( ( ( ph /\ x e. A ) /\ s = x ) -> ( X + s ) = ( X + x ) ) |
| 54 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
| 55 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> X e. RR ) |
| 56 |
3
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR ) |
| 57 |
55 56
|
readdcld |
|- ( ( ph /\ x e. A ) -> ( X + x ) e. RR ) |
| 58 |
52 53 54 57
|
fvmptd |
|- ( ( ph /\ x e. A ) -> ( ( s e. A |-> ( X + s ) ) ` x ) = ( X + x ) ) |
| 59 |
58
|
eqcomd |
|- ( ( ph /\ x e. A ) -> ( X + x ) = ( ( s e. A |-> ( X + s ) ) ` x ) ) |
| 60 |
59
|
fveq2d |
|- ( ( ph /\ x e. A ) -> ( F ` ( X + x ) ) = ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) |
| 61 |
60
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( F ` ( X + x ) ) ) = ( x e. A |-> ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) ) |
| 62 |
47 51 61
|
3eqtrrd |
|- ( ph -> ( x e. A |-> ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) = G ) |
| 63 |
43 46 62
|
3eqtrd |
|- ( ph -> ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) = G ) |
| 64 |
63
|
oveq1d |
|- ( ph -> ( ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) limCC D ) = ( G limCC D ) ) |
| 65 |
39 64
|
eleqtrd |
|- ( ph -> C e. ( G limCC D ) ) |