Metamath Proof Explorer


Theorem fourierdlem78

Description: G is continuous when restricted on an interval not containing 0 . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem78.f φF:
fourierdlem78.a φAππ
fourierdlem78.b φBππ
fourierdlem78.x φX
fourierdlem78.nxelab φ¬0AB
fourierdlem78.fcn φFA+XB+X:A+XB+Xcn
fourierdlem78.y φY
fourierdlem78.w φW
fourierdlem78.h H=sππifs=00FX+sif0<sYWs
fourierdlem78.k K=sππifs=01s2sins2
fourierdlem78.u U=sππHsKs
fourierdlem78.n φN
fourierdlem78.s S=sππsinN+12s
fourierdlem78.g G=sππUsSs
Assertion fourierdlem78 φGAB:ABcn

Proof

Step Hyp Ref Expression
1 fourierdlem78.f φF:
2 fourierdlem78.a φAππ
3 fourierdlem78.b φBππ
4 fourierdlem78.x φX
5 fourierdlem78.nxelab φ¬0AB
6 fourierdlem78.fcn φFA+XB+X:A+XB+Xcn
7 fourierdlem78.y φY
8 fourierdlem78.w φW
9 fourierdlem78.h H=sππifs=00FX+sif0<sYWs
10 fourierdlem78.k K=sππifs=01s2sins2
11 fourierdlem78.u U=sππHsKs
12 fourierdlem78.n φN
13 fourierdlem78.s S=sππsinN+12s
14 fourierdlem78.g G=sππUsSs
15 14 a1i φG=sππUsSs
16 15 reseq1d φGAB=sππUsSsAB
17 pire π
18 17 renegcli π
19 18 a1i φsABπ
20 17 a1i φsABπ
21 elioore sABs
22 21 adantl φsABs
23 18 a1i φπ
24 17 a1i φπ
25 23 24 iccssred φππ
26 25 2 sseldd φA
27 26 adantr φsABA
28 18 17 elicc2i AππAπAAπ
29 28 simp2bi AπππA
30 2 29 syl φπA
31 30 adantr φsABπA
32 27 rexrd φsABA*
33 25 3 sseldd φB
34 33 rexrd φB*
35 34 adantr φsABB*
36 simpr φsABsAB
37 ioogtlb A*B*sABA<s
38 32 35 36 37 syl3anc φsABA<s
39 19 27 22 31 38 lelttrd φsABπ<s
40 19 22 39 ltled φsABπs
41 33 adantr φsABB
42 iooltub A*B*sABs<B
43 32 35 36 42 syl3anc φsABs<B
44 18 17 elicc2i BππBπBBπ
45 44 simp3bi BππBπ
46 3 45 syl φBπ
47 46 adantr φsABBπ
48 22 41 20 43 47 ltletrd φsABs<π
49 22 20 48 ltled φsABsπ
50 19 20 22 40 49 eliccd φsABsππ
51 50 ex φsABsππ
52 51 ssrdv φABππ
53 52 resmptd φsππUsSsAB=sABUsSs
54 16 53 eqtrd φGAB=sABUsSs
55 0red φsAB0
56 1 adantr φsABF:
57 4 adantr φsABX
58 57 22 readdcld φsABX+s
59 56 58 ffvelcdmd φsABFX+s
60 7 8 ifcld φif0<sYW
61 60 adantr φsABif0<sYW
62 59 61 resubcld φsABFX+sif0<sYW
63 eleq1 s=0sAB0AB
64 63 biimpac sABs=00AB
65 64 adantll φsABs=00AB
66 5 ad2antrr φsABs=0¬0AB
67 65 66 pm2.65da φsAB¬s=0
68 67 neqned φsABs0
69 62 22 68 redivcld φsABFX+sif0<sYWs
70 55 69 ifcld φsABifs=00FX+sif0<sYWs
71 9 fvmpt2 sππifs=00FX+sif0<sYWsHs=ifs=00FX+sif0<sYWs
72 50 70 71 syl2anc φsABHs=ifs=00FX+sif0<sYWs
73 72 70 eqeltrd φsABHs
74 1red φsAB1
75 2re 2
76 75 a1i φsAB2
77 22 rehalfcld φsABs2
78 77 resincld φsABsins2
79 76 78 remulcld φsAB2sins2
80 76 recnd φsAB2
81 78 recnd φsABsins2
82 2ne0 20
83 82 a1i φsAB20
84 fourierdlem44 sππs0sins20
85 50 68 84 syl2anc φsABsins20
86 80 81 83 85 mulne0d φsAB2sins20
87 22 79 86 redivcld φsABs2sins2
88 74 87 ifcld φsABifs=01s2sins2
89 10 fvmpt2 sππifs=01s2sins2Ks=ifs=01s2sins2
90 50 88 89 syl2anc φsABKs=ifs=01s2sins2
91 90 88 eqeltrd φsABKs
92 73 91 remulcld φsABHsKs
93 11 fvmpt2 sππHsKsUs=HsKs
94 50 92 93 syl2anc φsABUs=HsKs
95 94 92 eqeltrd φsABUs
96 12 adantr φsABN
97 76 83 rereccld φsAB12
98 96 97 readdcld φsABN+12
99 98 22 remulcld φsABN+12s
100 99 resincld φsABsinN+12s
101 13 fvmpt2 sππsinN+12sSs=sinN+12s
102 50 100 101 syl2anc φsABSs=sinN+12s
103 102 100 eqeltrd φsABSs
104 95 103 remulcld φsABUsSs
105 eqid sABUsSs=sABUsSs
106 104 105 fmptd φsABUsSs:AB
107 ax-resscn
108 107 a1i φ
109 94 mpteq2dva φsABUs=sABHsKs
110 67 iffalsed φsABifs=00FX+sif0<sYWs=FX+sif0<sYWs
111 62 recnd φsABFX+sif0<sYW
112 22 recnd φsABs
113 111 112 68 divrecd φsABFX+sif0<sYWs=FX+sif0<sYW1s
114 72 110 113 3eqtrd φsABHs=FX+sif0<sYW1s
115 114 mpteq2dva φsABHs=sABFX+sif0<sYW1s
116 59 recnd φsABFX+s
117 61 recnd φsABif0<sYW
118 116 117 negsubd φsABFX+s+if0<sYW=FX+sif0<sYW
119 118 eqcomd φsABFX+sif0<sYW=FX+s+if0<sYW
120 119 mpteq2dva φsABFX+sif0<sYW=sABFX+s+if0<sYW
121 26 4 readdcld φA+X
122 121 rexrd φA+X*
123 122 adantr φsABA+X*
124 33 4 readdcld φB+X
125 124 rexrd φB+X*
126 125 adantr φsABB+X*
127 26 recnd φA
128 4 recnd φX
129 127 128 addcomd φA+X=X+A
130 129 adantr φsABA+X=X+A
131 27 22 57 38 ltadd2dd φsABX+A<X+s
132 130 131 eqbrtrd φsABA+X<X+s
133 22 41 57 43 ltadd2dd φsABX+s<X+B
134 33 recnd φB
135 128 134 addcomd φX+B=B+X
136 135 adantr φsABX+B=B+X
137 133 136 breqtrd φsABX+s<B+X
138 123 126 58 132 137 eliood φsABX+sA+XB+X
139 fvres X+sA+XB+XFA+XB+XX+s=FX+s
140 138 139 syl φsABFA+XB+XX+s=FX+s
141 140 eqcomd φsABFX+s=FA+XB+XX+s
142 141 mpteq2dva φsABFX+s=sABFA+XB+XX+s
143 ioosscn A+XB+X
144 143 a1i φA+XB+X
145 ioosscn AB
146 145 a1i φAB
147 144 6 146 128 138 fourierdlem23 φsABFA+XB+XX+s:ABcn
148 142 147 eqeltrd φsABFX+s:ABcn
149 0red φ0AsAB0
150 26 ad2antrr φ0AsABA
151 21 adantl φ0AsABs
152 simplr φ0AsAB0A
153 38 adantlr φ0AsABA<s
154 149 150 151 152 153 lelttrd φ0AsAB0<s
155 154 iftrued φ0AsABif0<sYW=Y
156 155 negeqd φ0AsABif0<sYW=Y
157 156 mpteq2dva φ0AsABif0<sYW=sABY
158 7 renegcld φY
159 158 recnd φY
160 ssid
161 160 a1i φ
162 146 159 161 constcncfg φsABY:ABcn
163 162 adantr φ0AsABY:ABcn
164 157 163 eqeltrd φ0AsABif0<sYW:ABcn
165 simpl φ¬0Aφ
166 26 rexrd φA*
167 166 ad2antrr φ¬0A¬B0A*
168 34 ad2antrr φ¬0A¬B0B*
169 0red φ¬0A¬B00
170 simpr φ¬0A¬0A
171 26 adantr φ¬0AA
172 0red φ¬0A0
173 171 172 ltnled φ¬0AA<0¬0A
174 170 173 mpbird φ¬0AA<0
175 174 adantr φ¬0A¬B0A<0
176 simpr φ¬B0¬B0
177 0red φ¬B00
178 33 adantr φ¬B0B
179 177 178 ltnled φ¬B00<B¬B0
180 176 179 mpbird φ¬B00<B
181 180 adantlr φ¬0A¬B00<B
182 167 168 169 175 181 eliood φ¬0A¬B00AB
183 5 ad2antrr φ¬0A¬B0¬0AB
184 182 183 condan φ¬0AB0
185 21 adantl φB0sABs
186 0red φB0sAB0
187 33 ad2antrr φB0sABB
188 43 adantlr φB0sABs<B
189 simplr φB0sABB0
190 185 187 186 188 189 ltletrd φB0sABs<0
191 185 186 190 ltnsymd φB0sAB¬0<s
192 191 iffalsed φB0sABif0<sYW=W
193 192 negeqd φB0sABif0<sYW=W
194 193 mpteq2dva φB0sABif0<sYW=sABW
195 8 recnd φW
196 195 negcld φW
197 146 196 161 constcncfg φsABW:ABcn
198 197 adantr φB0sABW:ABcn
199 194 198 eqeltrd φB0sABif0<sYW:ABcn
200 165 184 199 syl2anc φ¬0AsABif0<sYW:ABcn
201 164 200 pm2.61dan φsABif0<sYW:ABcn
202 148 201 addcncf φsABFX+s+if0<sYW:ABcn
203 120 202 eqeltrd φsABFX+sif0<sYW:ABcn
204 eqid s01s=s01s
205 1cnd φ1
206 204 cdivcncf 1s01s:0cn
207 205 206 syl φs01s:0cn
208 velsn s0s=0
209 67 208 sylnibr φsAB¬s0
210 112 209 eldifd φsABs0
211 210 ralrimiva φsABs0
212 dfss3 AB0sABs0
213 211 212 sylibr φAB0
214 22 68 rereccld φsAB1s
215 214 recnd φsAB1s
216 204 207 213 161 215 cncfmptssg φsAB1s:ABcn
217 203 216 mulcncf φsABFX+sif0<sYW1s:ABcn
218 115 217 eqeltrd φsABHs:ABcn
219 67 iffalsed φsABifs=01s2sins2=s2sins2
220 79 recnd φsAB2sins2
221 112 220 86 divrecd φsABs2sins2=s12sins2
222 90 219 221 3eqtrd φsABKs=s12sins2
223 222 mpteq2dva φsABKs=sABs12sins2
224 219 221 eqtr2d φsABs12sins2=ifs=01s2sins2
225 224 mpteq2dva φsABs12sins2=sABifs=01s2sins2
226 eqid sππifs=01s2sins2=sππifs=01s2sins2
227 cncfss ππcnππcn
228 107 160 227 mp2an ππcnππcn
229 226 fourierdlem62 sππifs=01s2sins2:ππcn
230 229 a1i φsππifs=01s2sins2:ππcn
231 228 230 sselid φsππifs=01s2sins2:ππcn
232 88 recnd φsABifs=01s2sins2
233 226 231 52 161 232 cncfmptssg φsABifs=01s2sins2:ABcn
234 225 233 eqeltrd φsABs12sins2:ABcn
235 223 234 eqeltrd φsABKs:ABcn
236 218 235 mulcncf φsABHsKs:ABcn
237 109 236 eqeltrd φsABUs:ABcn
238 102 mpteq2dva φsABSs=sABsinN+12s
239 sincn sin:cn
240 239 a1i φsin:cn
241 halfre 12
242 241 a1i φ12
243 12 242 readdcld φN+12
244 243 recnd φN+12
245 146 244 161 constcncfg φsABN+12:ABcn
246 146 161 idcncfg φsABs:ABcn
247 245 246 mulcncf φsABN+12s:ABcn
248 240 247 cncfmpt1f φsABsinN+12s:ABcn
249 238 248 eqeltrd φsABSs:ABcn
250 237 249 mulcncf φsABUsSs:ABcn
251 cncfcdm sABUsSs:ABcnsABUsSs:ABcnsABUsSs:AB
252 108 250 251 syl2anc φsABUsSs:ABcnsABUsSs:AB
253 106 252 mpbird φsABUsSs:ABcn
254 54 253 eqeltrd φGAB:ABcn