| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem88.1 |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 2 |
|
fourierdlem88.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 3 |
|
fourierdlem88.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝑉 ) |
| 4 |
|
fourierdlem88.y |
⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
| 5 |
|
fourierdlem88.w |
⊢ ( 𝜑 → 𝑊 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
| 6 |
|
fourierdlem88.h |
⊢ 𝐻 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
| 7 |
|
fourierdlem88.k |
⊢ 𝐾 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
| 8 |
|
fourierdlem88.u |
⊢ 𝑈 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
| 9 |
|
fourierdlem88.n |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 10 |
|
fourierdlem88.s |
⊢ 𝑆 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
| 11 |
|
fourierdlem88.g |
⊢ 𝐺 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) |
| 12 |
|
fourierdlem88.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 13 |
|
fourierdlem88.v |
⊢ ( 𝜑 → 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 14 |
|
fourierdlem88.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 15 |
|
fourierdlem88.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ 𝑖 ) ) ) |
| 16 |
|
fourierdlem88.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
| 17 |
|
fourierdlem88.q |
⊢ 𝑄 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
| 18 |
|
fourierdlem88.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑚 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 19 |
|
fourierdlem88.i |
⊢ 𝐼 = ( ℝ D 𝐹 ) |
| 20 |
|
fourierdlem88.ifn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐼 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) |
| 21 |
|
fourierdlem88.c |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐼 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
| 22 |
|
fourierdlem88.d |
⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝐼 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
| 23 |
|
pire |
⊢ π ∈ ℝ |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
| 25 |
24
|
renegcld |
⊢ ( 𝜑 → - π ∈ ℝ ) |
| 26 |
1
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 27 |
12 26
|
syl |
⊢ ( 𝜑 → ( 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 28 |
13 27
|
mpbid |
⊢ ( 𝜑 → ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑉 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑉 ‘ 𝑀 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑉 ‘ 𝑖 ) < ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 29 |
28
|
simpld |
⊢ ( 𝜑 → 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
| 30 |
|
elmapi |
⊢ ( 𝑉 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 31 |
|
frn |
⊢ ( 𝑉 : ( 0 ... 𝑀 ) ⟶ ℝ → ran 𝑉 ⊆ ℝ ) |
| 32 |
29 30 31
|
3syl |
⊢ ( 𝜑 → ran 𝑉 ⊆ ℝ ) |
| 33 |
32 3
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 34 |
25 24 33 1 18 12 13 17
|
fourierdlem14 |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑂 ‘ 𝑀 ) ) |
| 35 |
|
ioossre |
⊢ ( 𝑋 (,) +∞ ) ⊆ ℝ |
| 36 |
35
|
a1i |
⊢ ( 𝜑 → ( 𝑋 (,) +∞ ) ⊆ ℝ ) |
| 37 |
2 36
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) : ( 𝑋 (,) +∞ ) ⟶ ℝ ) |
| 38 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 39 |
36 38
|
sstrdi |
⊢ ( 𝜑 → ( 𝑋 (,) +∞ ) ⊆ ℂ ) |
| 40 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 41 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 42 |
41
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 43 |
33
|
ltpnfd |
⊢ ( 𝜑 → 𝑋 < +∞ ) |
| 44 |
40 42 33 43
|
lptioo1cn |
⊢ ( 𝜑 → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑋 (,) +∞ ) ) ) |
| 45 |
37 39 44 4
|
limcrecl |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 46 |
|
ioossre |
⊢ ( -∞ (,) 𝑋 ) ⊆ ℝ |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → ( -∞ (,) 𝑋 ) ⊆ ℝ ) |
| 48 |
2 47
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) : ( -∞ (,) 𝑋 ) ⟶ ℝ ) |
| 49 |
47 38
|
sstrdi |
⊢ ( 𝜑 → ( -∞ (,) 𝑋 ) ⊆ ℂ ) |
| 50 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
| 52 |
33
|
mnfltd |
⊢ ( 𝜑 → -∞ < 𝑋 ) |
| 53 |
40 51 33 52
|
lptioo2cn |
⊢ ( 𝜑 → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( -∞ (,) 𝑋 ) ) ) |
| 54 |
48 49 53 5
|
limcrecl |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
| 55 |
2 33 45 54 6 7 8
|
fourierdlem55 |
⊢ ( 𝜑 → 𝑈 : ( - π [,] π ) ⟶ ℝ ) |
| 56 |
55
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝑈 ‘ 𝑠 ) ∈ ℝ ) |
| 57 |
10
|
fourierdlem5 |
⊢ ( 𝑁 ∈ ℝ → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |
| 58 |
9 57
|
syl |
⊢ ( 𝜑 → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |
| 59 |
58
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝑆 ‘ 𝑠 ) ∈ ℝ ) |
| 60 |
56 59
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ∈ ℝ ) |
| 61 |
60
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ∈ ℂ ) |
| 62 |
61 11
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ( - π [,] π ) ⟶ ℂ ) |
| 63 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 64 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 65 |
38 63 64
|
mp2an |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ⊆ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) |
| 66 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 67 |
18 12 34
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 69 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 70 |
69
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 71 |
68 70
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( - π [,] π ) ) |
| 72 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 73 |
72
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 74 |
68 73
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( - π [,] π ) ) |
| 75 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℝ ) |
| 76 |
1 12 13 3
|
fourierdlem12 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
| 77 |
75
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℂ ) |
| 78 |
77
|
addlidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 0 + 𝑋 ) = 𝑋 ) |
| 79 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → π ∈ ℝ ) |
| 80 |
79
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → - π ∈ ℝ ) |
| 81 |
80 75
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( - π + 𝑋 ) ∈ ℝ ) |
| 82 |
79 75
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( π + 𝑋 ) ∈ ℝ ) |
| 83 |
81 82
|
iccssred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ⊆ ℝ ) |
| 84 |
1 12 13
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑉 : ( 0 ... 𝑀 ) ⟶ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ) |
| 85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑉 : ( 0 ... 𝑀 ) ⟶ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ) |
| 86 |
85 70
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ) |
| 87 |
83 86
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
| 88 |
87 75
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
| 89 |
17
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
| 90 |
70 88 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
| 91 |
90
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) = ( ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) + 𝑋 ) ) |
| 92 |
87
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℂ ) |
| 93 |
92 77
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) + 𝑋 ) = ( 𝑉 ‘ 𝑖 ) ) |
| 94 |
91 93
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) = ( 𝑉 ‘ 𝑖 ) ) |
| 95 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑉 ‘ 𝑖 ) = ( 𝑉 ‘ 𝑗 ) ) |
| 96 |
95
|
oveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) |
| 97 |
96
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) |
| 98 |
17 97
|
eqtri |
⊢ 𝑄 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) |
| 99 |
98
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) ) |
| 100 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 = ( 𝑖 + 1 ) ) → 𝑗 = ( 𝑖 + 1 ) ) |
| 101 |
100
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 = ( 𝑖 + 1 ) ) → ( 𝑉 ‘ 𝑗 ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 102 |
101
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 = ( 𝑖 + 1 ) ) → ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 103 |
85 73
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ( ( - π + 𝑋 ) [,] ( π + 𝑋 ) ) ) |
| 104 |
83 103
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 105 |
104 75
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) |
| 106 |
99 102 73 105
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 107 |
106
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) = ( ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) + 𝑋 ) ) |
| 108 |
104
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑉 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
| 109 |
108 77
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) + 𝑋 ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 110 |
107 109
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) = ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) |
| 111 |
94 110
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) ) = ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
| 112 |
78 111
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 0 + 𝑋 ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) ) ↔ 𝑋 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 113 |
76 112
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ¬ ( 0 + 𝑋 ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) ) ) |
| 114 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 0 ∈ ℝ ) |
| 115 |
90 88
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 116 |
106 105
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 117 |
114 115 116 75
|
eliooshift |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 0 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 0 + 𝑋 ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) ) ) ) |
| 118 |
113 117
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 0 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 119 |
111
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) ) ) = ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 120 |
111
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) ) –cn→ ℂ ) = ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 121 |
14 119 120
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) ) ) ∈ ( ( ( ( 𝑄 ‘ 𝑖 ) + 𝑋 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑋 ) ) –cn→ ℂ ) ) |
| 122 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑌 ∈ ℝ ) |
| 123 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑊 ∈ ℝ ) |
| 124 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑁 ∈ ℝ ) |
| 125 |
66 71 74 75 118 121 122 123 6 7 8 124 10 11
|
fourierdlem78 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℝ ) ) |
| 126 |
65 125
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 127 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑈 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑈 ‘ 𝑠 ) ) |
| 128 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑆 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑆 ‘ 𝑠 ) ) |
| 129 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) |
| 130 |
23
|
renegcli |
⊢ - π ∈ ℝ |
| 131 |
130
|
rexri |
⊢ - π ∈ ℝ* |
| 132 |
131
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → - π ∈ ℝ* ) |
| 133 |
23
|
rexri |
⊢ π ∈ ℝ* |
| 134 |
133
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → π ∈ ℝ* ) |
| 135 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 136 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 137 |
132 134 135 136
|
fourierdlem8 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 138 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 139 |
138
|
sseli |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 140 |
139
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 141 |
137 140
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ( - π [,] π ) ) |
| 142 |
2 33 45 54 6
|
fourierdlem9 |
⊢ ( 𝜑 → 𝐻 : ( - π [,] π ) ⟶ ℝ ) |
| 143 |
142
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐻 : ( - π [,] π ) ⟶ ℝ ) |
| 144 |
143 141
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑠 ) ∈ ℝ ) |
| 145 |
7
|
fourierdlem43 |
⊢ 𝐾 : ( - π [,] π ) ⟶ ℝ |
| 146 |
145
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐾 : ( - π [,] π ) ⟶ ℝ ) |
| 147 |
146 141
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐾 ‘ 𝑠 ) ∈ ℝ ) |
| 148 |
144 147
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ∈ ℝ ) |
| 149 |
8
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ∈ ℝ ) → ( 𝑈 ‘ 𝑠 ) = ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
| 150 |
141 148 149
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑈 ‘ 𝑠 ) = ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
| 151 |
150 148
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑈 ‘ 𝑠 ) ∈ ℝ ) |
| 152 |
151
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑈 ‘ 𝑠 ) ∈ ℂ ) |
| 153 |
9 10
|
fourierdlem18 |
⊢ ( 𝜑 → 𝑆 ∈ ( ( - π [,] π ) –cn→ ℝ ) ) |
| 154 |
|
cncff |
⊢ ( 𝑆 ∈ ( ( - π [,] π ) –cn→ ℝ ) → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |
| 155 |
153 154
|
syl |
⊢ ( 𝜑 → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |
| 156 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |
| 157 |
156
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |
| 158 |
157 141
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ 𝑠 ) ∈ ℝ ) |
| 159 |
158
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑆 ‘ 𝑠 ) ∈ ℂ ) |
| 160 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) |
| 161 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐾 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐾 ‘ 𝑠 ) ) |
| 162 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
| 163 |
144
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑠 ) ∈ ℂ ) |
| 164 |
147
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐾 ‘ 𝑠 ) ∈ ℂ ) |
| 165 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ℝ ⊆ ℂ ) |
| 166 |
20 165
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐼 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 167 |
|
eqid |
⊢ if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐷 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) = if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐷 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) |
| 168 |
33 1 2 3 4 54 6 12 13 15 17 18 19 166 22 167
|
fourierdlem75 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐷 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 169 |
142
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐻 : ( - π [,] π ) ⟶ ℝ ) |
| 170 |
131
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → - π ∈ ℝ* ) |
| 171 |
133
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → π ∈ ℝ* ) |
| 172 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 173 |
170 171 68 172
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 174 |
138 173
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 175 |
169 174
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
| 176 |
175
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 177 |
168 176
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐷 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 178 |
|
limcresi |
⊢ ( 𝐾 limℂ ( 𝑄 ‘ 𝑖 ) ) ⊆ ( ( 𝐾 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) |
| 179 |
7
|
fourierdlem62 |
⊢ 𝐾 ∈ ( ( - π [,] π ) –cn→ ℝ ) |
| 180 |
179
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐾 ∈ ( ( - π [,] π ) –cn→ ℝ ) ) |
| 181 |
180 71
|
cnlimci |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( 𝐾 limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 182 |
178 181
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( ( 𝐾 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 183 |
145
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐾 : ( - π [,] π ) ⟶ ℝ ) |
| 184 |
183 174
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐾 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐾 ‘ 𝑠 ) ) ) |
| 185 |
184
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐾 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐾 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 186 |
182 185
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐾 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 187 |
160 161 162 163 164 177 186
|
mullimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐷 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) · ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 188 |
150
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) = ( 𝑈 ‘ 𝑠 ) ) |
| 189 |
188
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑈 ‘ 𝑠 ) ) ) |
| 190 |
189
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑈 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 191 |
187 190
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐷 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) · ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑈 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 192 |
|
limcresi |
⊢ ( 𝑆 limℂ ( 𝑄 ‘ 𝑖 ) ) ⊆ ( ( 𝑆 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) |
| 193 |
153
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 ∈ ( ( - π [,] π ) –cn→ ℝ ) ) |
| 194 |
193 71
|
cnlimci |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( 𝑆 limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 195 |
192 194
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( ( 𝑆 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 196 |
156 174
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑆 ‘ 𝑠 ) ) ) |
| 197 |
196
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑆 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 198 |
195 197
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑄 ‘ 𝑖 ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑆 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 199 |
127 128 129 152 159 191 198
|
mullimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐷 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) · ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ) · ( 𝑆 ‘ ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 200 |
60 11
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ( - π [,] π ) ⟶ ℝ ) |
| 201 |
200
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐺 : ( - π [,] π ) ⟶ ℝ ) |
| 202 |
201 174
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
| 203 |
151 158
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ∈ ℝ ) |
| 204 |
11
|
fvmpt2 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ∈ ℝ ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) |
| 205 |
141 203 204
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐺 ‘ 𝑠 ) = ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) |
| 206 |
205
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐺 ‘ 𝑠 ) ) = ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) ) |
| 207 |
202 206
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) = ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 208 |
207
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 209 |
199 208
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( if ( ( 𝑉 ‘ 𝑖 ) = 𝑋 , 𝐷 , ( ( 𝑅 − if ( ( 𝑉 ‘ 𝑖 ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ 𝑖 ) ) ) · ( 𝐾 ‘ ( 𝑄 ‘ 𝑖 ) ) ) · ( 𝑆 ‘ ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 210 |
|
eqid |
⊢ if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) = 𝑋 , 𝐶 , ( ( 𝐿 − if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) = 𝑋 , 𝐶 , ( ( 𝐿 − if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 211 |
33 1 2 3 45 5 6 12 13 16 17 18 19 20 21 210
|
fourierdlem74 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) = 𝑋 , 𝐶 , ( ( 𝐿 − if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 212 |
175
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐻 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 213 |
211 212
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) = 𝑋 , 𝐶 , ( ( 𝐿 − if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐻 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 214 |
|
limcresi |
⊢ ( 𝐾 limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝐾 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 215 |
180 74
|
cnlimci |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐾 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ ( 𝐾 limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 216 |
214 215
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐾 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ ( ( 𝐾 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 217 |
184
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐾 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐾 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 218 |
216 217
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐾 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐾 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 219 |
160 161 162 163 164 213 218
|
mullimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) = 𝑋 , 𝐶 , ( ( 𝐿 − if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) · ( 𝐾 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 220 |
189
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑈 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 221 |
219 220
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) = 𝑋 , 𝐶 , ( ( 𝐿 − if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) · ( 𝐾 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑈 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 222 |
|
limcresi |
⊢ ( 𝑆 limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑆 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 223 |
193 74
|
cnlimci |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ ( 𝑆 limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 224 |
222 223
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ ( ( 𝑆 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 225 |
196
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑆 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 226 |
224 225
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑆 ‘ 𝑠 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 227 |
127 128 129 152 159 221 226
|
mullimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) = 𝑋 , 𝐶 , ( ( 𝐿 − if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) · ( 𝐾 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) · ( 𝑆 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 228 |
207
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 229 |
227 228
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) = 𝑋 , 𝐶 , ( ( 𝐿 − if ( ( 𝑉 ‘ ( 𝑖 + 1 ) ) < 𝑋 , 𝑊 , 𝑌 ) ) / ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) · ( 𝐾 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) · ( 𝑆 ‘ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝐺 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 230 |
18 12 34 62 126 209 229
|
fourierdlem69 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐿1 ) |