| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem18.n |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 2 |
|
fourierdlem18.s |
⊢ 𝑆 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
| 3 |
|
resincncf |
⊢ ( sin ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) |
| 4 |
|
cncff |
⊢ ( ( sin ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) → ( sin ↾ ℝ ) : ℝ ⟶ ℝ ) |
| 5 |
3 4
|
ax-mp |
⊢ ( sin ↾ ℝ ) : ℝ ⟶ ℝ |
| 6 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
| 8 |
1 7
|
readdcld |
⊢ ( 𝜑 → ( 𝑁 + ( 1 / 2 ) ) ∈ ℝ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝑁 + ( 1 / 2 ) ) ∈ ℝ ) |
| 10 |
|
pire |
⊢ π ∈ ℝ |
| 11 |
10
|
renegcli |
⊢ - π ∈ ℝ |
| 12 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π [,] π ) ⊆ ℝ ) |
| 13 |
11 10 12
|
mp2an |
⊢ ( - π [,] π ) ⊆ ℝ |
| 14 |
13
|
sseli |
⊢ ( 𝑠 ∈ ( - π [,] π ) → 𝑠 ∈ ℝ ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → 𝑠 ∈ ℝ ) |
| 16 |
9 15
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ∈ ℝ ) |
| 17 |
|
eqid |
⊢ ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) |
| 18 |
16 17
|
fmptd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) : ( - π [,] π ) ⟶ ℝ ) |
| 19 |
|
fcompt |
⊢ ( ( ( sin ↾ ℝ ) : ℝ ⟶ ℝ ∧ ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) : ( - π [,] π ) ⟶ ℝ ) → ( ( sin ↾ ℝ ) ∘ ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) = ( 𝑥 ∈ ( - π [,] π ) ↦ ( ( sin ↾ ℝ ) ‘ ( ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ‘ 𝑥 ) ) ) ) |
| 20 |
5 18 19
|
sylancr |
⊢ ( 𝜑 → ( ( sin ↾ ℝ ) ∘ ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) = ( 𝑥 ∈ ( - π [,] π ) ↦ ( ( sin ↾ ℝ ) ‘ ( ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ‘ 𝑥 ) ) ) ) |
| 21 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑠 = 𝑥 → ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) = ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) ∧ 𝑠 = 𝑥 ) → ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) = ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝑥 ∈ ( - π [,] π ) ) |
| 25 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → ( 𝑁 + ( 1 / 2 ) ) ∈ ℝ ) |
| 26 |
13 24
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝑥 ∈ ℝ ) |
| 27 |
25 26
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ∈ ℝ ) |
| 28 |
21 23 24 27
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → ( ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ‘ 𝑥 ) = ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) |
| 29 |
28
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → ( ( sin ↾ ℝ ) ‘ ( ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ‘ 𝑥 ) ) = ( ( sin ↾ ℝ ) ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) ) |
| 30 |
29
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] π ) ↦ ( ( sin ↾ ℝ ) ‘ ( ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( - π [,] π ) ↦ ( ( sin ↾ ℝ ) ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) ) ) |
| 31 |
|
fvres |
⊢ ( ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ∈ ℝ → ( ( sin ↾ ℝ ) ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) = ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) ) |
| 32 |
27 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] π ) ) → ( ( sin ↾ ℝ ) ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) = ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) ) |
| 33 |
32
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] π ) ↦ ( ( sin ↾ ℝ ) ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) ) = ( 𝑥 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝑥 = 𝑠 → ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) = ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) |
| 35 |
34
|
fveq2d |
⊢ ( 𝑥 = 𝑠 → ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) = ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
| 36 |
35
|
cbvmptv |
⊢ ( 𝑥 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) ) = ( 𝑠 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
| 37 |
36
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑥 ) ) ) = ( 𝑠 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) ) |
| 38 |
30 33 37
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] π ) ↦ ( ( sin ↾ ℝ ) ‘ ( ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ‘ 𝑥 ) ) ) = ( 𝑠 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) ) |
| 39 |
2
|
eqcomi |
⊢ ( 𝑠 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) = 𝑆 |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ( 𝑠 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) = 𝑆 ) |
| 41 |
20 38 40
|
3eqtrrd |
⊢ ( 𝜑 → 𝑆 = ( ( sin ↾ ℝ ) ∘ ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) ) |
| 42 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 43 |
13 42
|
sstri |
⊢ ( - π [,] π ) ⊆ ℂ |
| 44 |
43
|
a1i |
⊢ ( 𝜑 → ( - π [,] π ) ⊆ ℂ ) |
| 45 |
1
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 46 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℂ ) |
| 48 |
45 47
|
addcld |
⊢ ( 𝜑 → ( 𝑁 + ( 1 / 2 ) ) ∈ ℂ ) |
| 49 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 50 |
49
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 51 |
44 48 50
|
constcncfg |
⊢ ( 𝜑 → ( 𝑠 ∈ ( - π [,] π ) ↦ ( 𝑁 + ( 1 / 2 ) ) ) ∈ ( ( - π [,] π ) –cn→ ℂ ) ) |
| 52 |
44 50
|
idcncfg |
⊢ ( 𝜑 → ( 𝑠 ∈ ( - π [,] π ) ↦ 𝑠 ) ∈ ( ( - π [,] π ) –cn→ ℂ ) ) |
| 53 |
51 52
|
mulcncf |
⊢ ( 𝜑 → ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ∈ ( ( - π [,] π ) –cn→ ℂ ) ) |
| 54 |
|
ssid |
⊢ ( - π [,] π ) ⊆ ( - π [,] π ) |
| 55 |
54
|
a1i |
⊢ ( 𝜑 → ( - π [,] π ) ⊆ ( - π [,] π ) ) |
| 56 |
42
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 57 |
17 53 55 56 16
|
cncfmptssg |
⊢ ( 𝜑 → ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ∈ ( ( - π [,] π ) –cn→ ℝ ) ) |
| 58 |
3
|
a1i |
⊢ ( 𝜑 → ( sin ↾ ℝ ) ∈ ( ℝ –cn→ ℝ ) ) |
| 59 |
57 58
|
cncfco |
⊢ ( 𝜑 → ( ( sin ↾ ℝ ) ∘ ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑠 ) ) ) ∈ ( ( - π [,] π ) –cn→ ℝ ) ) |
| 60 |
41 59
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ ( ( - π [,] π ) –cn→ ℝ ) ) |