| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem18.n |
|- ( ph -> N e. RR ) |
| 2 |
|
fourierdlem18.s |
|- S = ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( N + ( 1 / 2 ) ) x. s ) ) ) |
| 3 |
|
resincncf |
|- ( sin |` RR ) e. ( RR -cn-> RR ) |
| 4 |
|
cncff |
|- ( ( sin |` RR ) e. ( RR -cn-> RR ) -> ( sin |` RR ) : RR --> RR ) |
| 5 |
3 4
|
ax-mp |
|- ( sin |` RR ) : RR --> RR |
| 6 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 7 |
6
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
| 8 |
1 7
|
readdcld |
|- ( ph -> ( N + ( 1 / 2 ) ) e. RR ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( N + ( 1 / 2 ) ) e. RR ) |
| 10 |
|
pire |
|- _pi e. RR |
| 11 |
10
|
renegcli |
|- -u _pi e. RR |
| 12 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
| 13 |
11 10 12
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
| 14 |
13
|
sseli |
|- ( s e. ( -u _pi [,] _pi ) -> s e. RR ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> s e. RR ) |
| 16 |
9 15
|
remulcld |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( ( N + ( 1 / 2 ) ) x. s ) e. RR ) |
| 17 |
|
eqid |
|- ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) = ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) |
| 18 |
16 17
|
fmptd |
|- ( ph -> ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) : ( -u _pi [,] _pi ) --> RR ) |
| 19 |
|
fcompt |
|- ( ( ( sin |` RR ) : RR --> RR /\ ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) : ( -u _pi [,] _pi ) --> RR ) -> ( ( sin |` RR ) o. ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) ) = ( x e. ( -u _pi [,] _pi ) |-> ( ( sin |` RR ) ` ( ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) ` x ) ) ) ) |
| 20 |
5 18 19
|
sylancr |
|- ( ph -> ( ( sin |` RR ) o. ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) ) = ( x e. ( -u _pi [,] _pi ) |-> ( ( sin |` RR ) ` ( ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) ` x ) ) ) ) |
| 21 |
|
eqidd |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) = ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) ) |
| 22 |
|
oveq2 |
|- ( s = x -> ( ( N + ( 1 / 2 ) ) x. s ) = ( ( N + ( 1 / 2 ) ) x. x ) ) |
| 23 |
22
|
adantl |
|- ( ( ( ph /\ x e. ( -u _pi [,] _pi ) ) /\ s = x ) -> ( ( N + ( 1 / 2 ) ) x. s ) = ( ( N + ( 1 / 2 ) ) x. x ) ) |
| 24 |
|
simpr |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> x e. ( -u _pi [,] _pi ) ) |
| 25 |
8
|
adantr |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> ( N + ( 1 / 2 ) ) e. RR ) |
| 26 |
13 24
|
sselid |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> x e. RR ) |
| 27 |
25 26
|
remulcld |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> ( ( N + ( 1 / 2 ) ) x. x ) e. RR ) |
| 28 |
21 23 24 27
|
fvmptd |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> ( ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) ` x ) = ( ( N + ( 1 / 2 ) ) x. x ) ) |
| 29 |
28
|
fveq2d |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> ( ( sin |` RR ) ` ( ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) ` x ) ) = ( ( sin |` RR ) ` ( ( N + ( 1 / 2 ) ) x. x ) ) ) |
| 30 |
29
|
mpteq2dva |
|- ( ph -> ( x e. ( -u _pi [,] _pi ) |-> ( ( sin |` RR ) ` ( ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) ` x ) ) ) = ( x e. ( -u _pi [,] _pi ) |-> ( ( sin |` RR ) ` ( ( N + ( 1 / 2 ) ) x. x ) ) ) ) |
| 31 |
|
fvres |
|- ( ( ( N + ( 1 / 2 ) ) x. x ) e. RR -> ( ( sin |` RR ) ` ( ( N + ( 1 / 2 ) ) x. x ) ) = ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) ) |
| 32 |
27 31
|
syl |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> ( ( sin |` RR ) ` ( ( N + ( 1 / 2 ) ) x. x ) ) = ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) ) |
| 33 |
32
|
mpteq2dva |
|- ( ph -> ( x e. ( -u _pi [,] _pi ) |-> ( ( sin |` RR ) ` ( ( N + ( 1 / 2 ) ) x. x ) ) ) = ( x e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) ) ) |
| 34 |
|
oveq2 |
|- ( x = s -> ( ( N + ( 1 / 2 ) ) x. x ) = ( ( N + ( 1 / 2 ) ) x. s ) ) |
| 35 |
34
|
fveq2d |
|- ( x = s -> ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) = ( sin ` ( ( N + ( 1 / 2 ) ) x. s ) ) ) |
| 36 |
35
|
cbvmptv |
|- ( x e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( N + ( 1 / 2 ) ) x. s ) ) ) |
| 37 |
36
|
a1i |
|- ( ph -> ( x e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( N + ( 1 / 2 ) ) x. x ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( N + ( 1 / 2 ) ) x. s ) ) ) ) |
| 38 |
30 33 37
|
3eqtrd |
|- ( ph -> ( x e. ( -u _pi [,] _pi ) |-> ( ( sin |` RR ) ` ( ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) ` x ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( N + ( 1 / 2 ) ) x. s ) ) ) ) |
| 39 |
2
|
eqcomi |
|- ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( N + ( 1 / 2 ) ) x. s ) ) ) = S |
| 40 |
39
|
a1i |
|- ( ph -> ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( N + ( 1 / 2 ) ) x. s ) ) ) = S ) |
| 41 |
20 38 40
|
3eqtrrd |
|- ( ph -> S = ( ( sin |` RR ) o. ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) ) ) |
| 42 |
|
ax-resscn |
|- RR C_ CC |
| 43 |
13 42
|
sstri |
|- ( -u _pi [,] _pi ) C_ CC |
| 44 |
43
|
a1i |
|- ( ph -> ( -u _pi [,] _pi ) C_ CC ) |
| 45 |
1
|
recnd |
|- ( ph -> N e. CC ) |
| 46 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
| 47 |
46
|
a1i |
|- ( ph -> ( 1 / 2 ) e. CC ) |
| 48 |
45 47
|
addcld |
|- ( ph -> ( N + ( 1 / 2 ) ) e. CC ) |
| 49 |
|
ssid |
|- CC C_ CC |
| 50 |
49
|
a1i |
|- ( ph -> CC C_ CC ) |
| 51 |
44 48 50
|
constcncfg |
|- ( ph -> ( s e. ( -u _pi [,] _pi ) |-> ( N + ( 1 / 2 ) ) ) e. ( ( -u _pi [,] _pi ) -cn-> CC ) ) |
| 52 |
44 50
|
idcncfg |
|- ( ph -> ( s e. ( -u _pi [,] _pi ) |-> s ) e. ( ( -u _pi [,] _pi ) -cn-> CC ) ) |
| 53 |
51 52
|
mulcncf |
|- ( ph -> ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) e. ( ( -u _pi [,] _pi ) -cn-> CC ) ) |
| 54 |
|
ssid |
|- ( -u _pi [,] _pi ) C_ ( -u _pi [,] _pi ) |
| 55 |
54
|
a1i |
|- ( ph -> ( -u _pi [,] _pi ) C_ ( -u _pi [,] _pi ) ) |
| 56 |
42
|
a1i |
|- ( ph -> RR C_ CC ) |
| 57 |
17 53 55 56 16
|
cncfmptssg |
|- ( ph -> ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) e. ( ( -u _pi [,] _pi ) -cn-> RR ) ) |
| 58 |
3
|
a1i |
|- ( ph -> ( sin |` RR ) e. ( RR -cn-> RR ) ) |
| 59 |
57 58
|
cncfco |
|- ( ph -> ( ( sin |` RR ) o. ( s e. ( -u _pi [,] _pi ) |-> ( ( N + ( 1 / 2 ) ) x. s ) ) ) e. ( ( -u _pi [,] _pi ) -cn-> RR ) ) |
| 60 |
41 59
|
eqeltrd |
|- ( ph -> S e. ( ( -u _pi [,] _pi ) -cn-> RR ) ) |