| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem19.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | fourierdlem19.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | fourierdlem19.altb |  |-  ( ph -> A < B ) | 
						
							| 4 |  | fourierdlem19.x |  |-  ( ph -> X e. RR ) | 
						
							| 5 |  | fourierdlem19.d |  |-  D = { y e. ( ( A + X ) (,] ( B + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. C } | 
						
							| 6 |  | fourierdlem19.t |  |-  T = ( B - A ) | 
						
							| 7 |  | fourierdlem19.e |  |-  E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) | 
						
							| 8 |  | fourierdlem19.w |  |-  ( ph -> W e. D ) | 
						
							| 9 |  | fourierdlem19.z |  |-  ( ph -> Z e. D ) | 
						
							| 10 |  | fourierdlem19.ezew |  |-  ( ph -> ( E ` Z ) = ( E ` W ) ) | 
						
							| 11 | 1 4 | readdcld |  |-  ( ph -> ( A + X ) e. RR ) | 
						
							| 12 | 11 | rexrd |  |-  ( ph -> ( A + X ) e. RR* ) | 
						
							| 13 | 2 4 | readdcld |  |-  ( ph -> ( B + X ) e. RR ) | 
						
							| 14 | 13 | rexrd |  |-  ( ph -> ( B + X ) e. RR* ) | 
						
							| 15 |  | ssrab2 |  |-  { y e. ( ( A + X ) (,] ( B + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. C } C_ ( ( A + X ) (,] ( B + X ) ) | 
						
							| 16 | 5 15 | eqsstri |  |-  D C_ ( ( A + X ) (,] ( B + X ) ) | 
						
							| 17 | 16 9 | sselid |  |-  ( ph -> Z e. ( ( A + X ) (,] ( B + X ) ) ) | 
						
							| 18 |  | iocleub |  |-  ( ( ( A + X ) e. RR* /\ ( B + X ) e. RR* /\ Z e. ( ( A + X ) (,] ( B + X ) ) ) -> Z <_ ( B + X ) ) | 
						
							| 19 | 12 14 17 18 | syl3anc |  |-  ( ph -> Z <_ ( B + X ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ W < Z ) -> Z <_ ( B + X ) ) | 
						
							| 21 | 13 | adantr |  |-  ( ( ph /\ W < Z ) -> ( B + X ) e. RR ) | 
						
							| 22 |  | iocssre |  |-  ( ( ( A + X ) e. RR* /\ ( B + X ) e. RR ) -> ( ( A + X ) (,] ( B + X ) ) C_ RR ) | 
						
							| 23 | 12 13 22 | syl2anc |  |-  ( ph -> ( ( A + X ) (,] ( B + X ) ) C_ RR ) | 
						
							| 24 | 16 8 | sselid |  |-  ( ph -> W e. ( ( A + X ) (,] ( B + X ) ) ) | 
						
							| 25 | 23 24 | sseldd |  |-  ( ph -> W e. RR ) | 
						
							| 26 | 2 1 | resubcld |  |-  ( ph -> ( B - A ) e. RR ) | 
						
							| 27 | 6 26 | eqeltrid |  |-  ( ph -> T e. RR ) | 
						
							| 28 | 25 27 | readdcld |  |-  ( ph -> ( W + T ) e. RR ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ W < Z ) -> ( W + T ) e. RR ) | 
						
							| 30 | 23 17 | sseldd |  |-  ( ph -> Z e. RR ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ W < Z ) -> Z e. RR ) | 
						
							| 32 | 6 | eqcomi |  |-  ( B - A ) = T | 
						
							| 33 | 32 | a1i |  |-  ( ph -> ( B - A ) = T ) | 
						
							| 34 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 35 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 36 | 27 | recnd |  |-  ( ph -> T e. CC ) | 
						
							| 37 | 34 35 36 | subaddd |  |-  ( ph -> ( ( B - A ) = T <-> ( A + T ) = B ) ) | 
						
							| 38 | 33 37 | mpbid |  |-  ( ph -> ( A + T ) = B ) | 
						
							| 39 | 38 | eqcomd |  |-  ( ph -> B = ( A + T ) ) | 
						
							| 40 | 39 | oveq1d |  |-  ( ph -> ( B + X ) = ( ( A + T ) + X ) ) | 
						
							| 41 | 4 | recnd |  |-  ( ph -> X e. CC ) | 
						
							| 42 | 35 36 41 | add32d |  |-  ( ph -> ( ( A + T ) + X ) = ( ( A + X ) + T ) ) | 
						
							| 43 | 40 42 | eqtrd |  |-  ( ph -> ( B + X ) = ( ( A + X ) + T ) ) | 
						
							| 44 |  | iocgtlb |  |-  ( ( ( A + X ) e. RR* /\ ( B + X ) e. RR* /\ W e. ( ( A + X ) (,] ( B + X ) ) ) -> ( A + X ) < W ) | 
						
							| 45 | 12 14 24 44 | syl3anc |  |-  ( ph -> ( A + X ) < W ) | 
						
							| 46 | 11 25 27 45 | ltadd1dd |  |-  ( ph -> ( ( A + X ) + T ) < ( W + T ) ) | 
						
							| 47 | 43 46 | eqbrtrd |  |-  ( ph -> ( B + X ) < ( W + T ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ W < Z ) -> ( B + X ) < ( W + T ) ) | 
						
							| 49 | 7 | a1i |  |-  ( ph -> E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) ) | 
						
							| 50 |  | id |  |-  ( x = W -> x = W ) | 
						
							| 51 |  | oveq2 |  |-  ( x = W -> ( B - x ) = ( B - W ) ) | 
						
							| 52 | 51 | oveq1d |  |-  ( x = W -> ( ( B - x ) / T ) = ( ( B - W ) / T ) ) | 
						
							| 53 | 52 | fveq2d |  |-  ( x = W -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - W ) / T ) ) ) | 
						
							| 54 | 53 | oveq1d |  |-  ( x = W -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) | 
						
							| 55 | 50 54 | oveq12d |  |-  ( x = W -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) ) | 
						
							| 56 | 55 | adantl |  |-  ( ( ph /\ x = W ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) ) | 
						
							| 57 | 2 25 | resubcld |  |-  ( ph -> ( B - W ) e. RR ) | 
						
							| 58 | 1 2 | posdifd |  |-  ( ph -> ( A < B <-> 0 < ( B - A ) ) ) | 
						
							| 59 | 3 58 | mpbid |  |-  ( ph -> 0 < ( B - A ) ) | 
						
							| 60 | 59 6 | breqtrrdi |  |-  ( ph -> 0 < T ) | 
						
							| 61 | 60 | gt0ne0d |  |-  ( ph -> T =/= 0 ) | 
						
							| 62 | 57 27 61 | redivcld |  |-  ( ph -> ( ( B - W ) / T ) e. RR ) | 
						
							| 63 | 62 | flcld |  |-  ( ph -> ( |_ ` ( ( B - W ) / T ) ) e. ZZ ) | 
						
							| 64 | 63 | zred |  |-  ( ph -> ( |_ ` ( ( B - W ) / T ) ) e. RR ) | 
						
							| 65 | 64 27 | remulcld |  |-  ( ph -> ( ( |_ ` ( ( B - W ) / T ) ) x. T ) e. RR ) | 
						
							| 66 | 25 65 | readdcld |  |-  ( ph -> ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) e. RR ) | 
						
							| 67 | 49 56 25 66 | fvmptd |  |-  ( ph -> ( E ` W ) = ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) ) | 
						
							| 68 | 67 66 | eqeltrd |  |-  ( ph -> ( E ` W ) e. RR ) | 
						
							| 69 | 68 | recnd |  |-  ( ph -> ( E ` W ) e. CC ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ph /\ W < Z ) -> ( E ` W ) e. CC ) | 
						
							| 71 | 65 | recnd |  |-  ( ph -> ( ( |_ ` ( ( B - W ) / T ) ) x. T ) e. CC ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - W ) / T ) ) x. T ) e. CC ) | 
						
							| 73 | 36 | adantr |  |-  ( ( ph /\ W < Z ) -> T e. CC ) | 
						
							| 74 | 70 72 73 | subsubd |  |-  ( ( ph /\ W < Z ) -> ( ( E ` W ) - ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) - T ) ) = ( ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) + T ) ) | 
						
							| 75 | 74 | eqcomd |  |-  ( ( ph /\ W < Z ) -> ( ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) + T ) = ( ( E ` W ) - ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) - T ) ) ) | 
						
							| 76 | 2 30 | resubcld |  |-  ( ph -> ( B - Z ) e. RR ) | 
						
							| 77 | 76 27 61 | redivcld |  |-  ( ph -> ( ( B - Z ) / T ) e. RR ) | 
						
							| 78 | 77 | flcld |  |-  ( ph -> ( |_ ` ( ( B - Z ) / T ) ) e. ZZ ) | 
						
							| 79 | 78 | zred |  |-  ( ph -> ( |_ ` ( ( B - Z ) / T ) ) e. RR ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - Z ) / T ) ) e. RR ) | 
						
							| 81 | 27 | adantr |  |-  ( ( ph /\ W < Z ) -> T e. RR ) | 
						
							| 82 | 80 81 | remulcld |  |-  ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) e. RR ) | 
						
							| 83 | 64 | adantr |  |-  ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - W ) / T ) ) e. RR ) | 
						
							| 84 | 83 81 | remulcld |  |-  ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - W ) / T ) ) x. T ) e. RR ) | 
						
							| 85 | 84 81 | resubcld |  |-  ( ( ph /\ W < Z ) -> ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) - T ) e. RR ) | 
						
							| 86 | 68 | adantr |  |-  ( ( ph /\ W < Z ) -> ( E ` W ) e. RR ) | 
						
							| 87 | 79 27 | remulcld |  |-  ( ph -> ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) e. RR ) | 
						
							| 88 | 87 | recnd |  |-  ( ph -> ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) e. CC ) | 
						
							| 89 | 88 36 | pncand |  |-  ( ph -> ( ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) - T ) = ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) | 
						
							| 90 | 89 | eqcomd |  |-  ( ph -> ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) = ( ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) - T ) ) | 
						
							| 91 | 90 | adantr |  |-  ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) = ( ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) - T ) ) | 
						
							| 92 | 82 81 | readdcld |  |-  ( ( ph /\ W < Z ) -> ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) e. RR ) | 
						
							| 93 | 79 | recnd |  |-  ( ph -> ( |_ ` ( ( B - Z ) / T ) ) e. CC ) | 
						
							| 94 | 93 36 | adddirp1d |  |-  ( ph -> ( ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) x. T ) = ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) ) | 
						
							| 95 | 94 | eqcomd |  |-  ( ph -> ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) = ( ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) x. T ) ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ph /\ W < Z ) -> ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) = ( ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) x. T ) ) | 
						
							| 97 |  | 1red |  |-  ( ( ph /\ W < Z ) -> 1 e. RR ) | 
						
							| 98 | 80 97 | readdcld |  |-  ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) e. RR ) | 
						
							| 99 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 100 | 99 27 60 | ltled |  |-  ( ph -> 0 <_ T ) | 
						
							| 101 | 100 | adantr |  |-  ( ( ph /\ W < Z ) -> 0 <_ T ) | 
						
							| 102 | 86 31 | resubcld |  |-  ( ( ph /\ W < Z ) -> ( ( E ` W ) - Z ) e. RR ) | 
						
							| 103 | 25 | adantr |  |-  ( ( ph /\ W < Z ) -> W e. RR ) | 
						
							| 104 | 86 103 | resubcld |  |-  ( ( ph /\ W < Z ) -> ( ( E ` W ) - W ) e. RR ) | 
						
							| 105 | 27 60 | elrpd |  |-  ( ph -> T e. RR+ ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ph /\ W < Z ) -> T e. RR+ ) | 
						
							| 107 |  | simpr |  |-  ( ( ph /\ W < Z ) -> W < Z ) | 
						
							| 108 | 103 31 86 107 | ltsub2dd |  |-  ( ( ph /\ W < Z ) -> ( ( E ` W ) - Z ) < ( ( E ` W ) - W ) ) | 
						
							| 109 | 102 104 106 108 | ltdiv1dd |  |-  ( ( ph /\ W < Z ) -> ( ( ( E ` W ) - Z ) / T ) < ( ( ( E ` W ) - W ) / T ) ) | 
						
							| 110 |  | id |  |-  ( x = Z -> x = Z ) | 
						
							| 111 |  | oveq2 |  |-  ( x = Z -> ( B - x ) = ( B - Z ) ) | 
						
							| 112 | 111 | oveq1d |  |-  ( x = Z -> ( ( B - x ) / T ) = ( ( B - Z ) / T ) ) | 
						
							| 113 | 112 | fveq2d |  |-  ( x = Z -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - Z ) / T ) ) ) | 
						
							| 114 | 113 | oveq1d |  |-  ( x = Z -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) | 
						
							| 115 | 110 114 | oveq12d |  |-  ( x = Z -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) | 
						
							| 116 | 115 | adantl |  |-  ( ( ph /\ x = Z ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) | 
						
							| 117 | 30 87 | readdcld |  |-  ( ph -> ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) e. RR ) | 
						
							| 118 | 49 116 30 117 | fvmptd |  |-  ( ph -> ( E ` Z ) = ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) | 
						
							| 119 | 10 118 | eqtr3d |  |-  ( ph -> ( E ` W ) = ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) | 
						
							| 120 | 119 | oveq1d |  |-  ( ph -> ( ( E ` W ) - Z ) = ( ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) - Z ) ) | 
						
							| 121 | 30 | recnd |  |-  ( ph -> Z e. CC ) | 
						
							| 122 | 121 88 | pncan2d |  |-  ( ph -> ( ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) - Z ) = ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) | 
						
							| 123 | 120 122 | eqtrd |  |-  ( ph -> ( ( E ` W ) - Z ) = ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) | 
						
							| 124 | 123 | oveq1d |  |-  ( ph -> ( ( ( E ` W ) - Z ) / T ) = ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) / T ) ) | 
						
							| 125 | 93 36 61 | divcan4d |  |-  ( ph -> ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) / T ) = ( |_ ` ( ( B - Z ) / T ) ) ) | 
						
							| 126 | 124 125 | eqtr2d |  |-  ( ph -> ( |_ ` ( ( B - Z ) / T ) ) = ( ( ( E ` W ) - Z ) / T ) ) | 
						
							| 127 | 126 | adantr |  |-  ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - Z ) / T ) ) = ( ( ( E ` W ) - Z ) / T ) ) | 
						
							| 128 | 67 | oveq1d |  |-  ( ph -> ( ( E ` W ) - W ) = ( ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) - W ) ) | 
						
							| 129 | 128 | oveq1d |  |-  ( ph -> ( ( ( E ` W ) - W ) / T ) = ( ( ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) - W ) / T ) ) | 
						
							| 130 | 25 | recnd |  |-  ( ph -> W e. CC ) | 
						
							| 131 | 130 71 | pncan2d |  |-  ( ph -> ( ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) - W ) = ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) | 
						
							| 132 | 131 | oveq1d |  |-  ( ph -> ( ( ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) - W ) / T ) = ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) / T ) ) | 
						
							| 133 | 64 | recnd |  |-  ( ph -> ( |_ ` ( ( B - W ) / T ) ) e. CC ) | 
						
							| 134 | 133 36 61 | divcan4d |  |-  ( ph -> ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) / T ) = ( |_ ` ( ( B - W ) / T ) ) ) | 
						
							| 135 | 129 132 134 | 3eqtrrd |  |-  ( ph -> ( |_ ` ( ( B - W ) / T ) ) = ( ( ( E ` W ) - W ) / T ) ) | 
						
							| 136 | 135 | adantr |  |-  ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - W ) / T ) ) = ( ( ( E ` W ) - W ) / T ) ) | 
						
							| 137 | 109 127 136 | 3brtr4d |  |-  ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - Z ) / T ) ) < ( |_ ` ( ( B - W ) / T ) ) ) | 
						
							| 138 | 78 | adantr |  |-  ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - Z ) / T ) ) e. ZZ ) | 
						
							| 139 | 63 | adantr |  |-  ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - W ) / T ) ) e. ZZ ) | 
						
							| 140 |  | zltp1le |  |-  ( ( ( |_ ` ( ( B - Z ) / T ) ) e. ZZ /\ ( |_ ` ( ( B - W ) / T ) ) e. ZZ ) -> ( ( |_ ` ( ( B - Z ) / T ) ) < ( |_ ` ( ( B - W ) / T ) ) <-> ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) <_ ( |_ ` ( ( B - W ) / T ) ) ) ) | 
						
							| 141 | 138 139 140 | syl2anc |  |-  ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - Z ) / T ) ) < ( |_ ` ( ( B - W ) / T ) ) <-> ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) <_ ( |_ ` ( ( B - W ) / T ) ) ) ) | 
						
							| 142 | 137 141 | mpbid |  |-  ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) <_ ( |_ ` ( ( B - W ) / T ) ) ) | 
						
							| 143 | 98 83 81 101 142 | lemul1ad |  |-  ( ( ph /\ W < Z ) -> ( ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) x. T ) <_ ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) | 
						
							| 144 | 96 143 | eqbrtrd |  |-  ( ( ph /\ W < Z ) -> ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) <_ ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) | 
						
							| 145 | 92 84 81 144 | lesub1dd |  |-  ( ( ph /\ W < Z ) -> ( ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) - T ) <_ ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) - T ) ) | 
						
							| 146 | 91 145 | eqbrtrd |  |-  ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) <_ ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) - T ) ) | 
						
							| 147 | 82 85 86 146 | lesub2dd |  |-  ( ( ph /\ W < Z ) -> ( ( E ` W ) - ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) - T ) ) <_ ( ( E ` W ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) | 
						
							| 148 | 75 147 | eqbrtrd |  |-  ( ( ph /\ W < Z ) -> ( ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) + T ) <_ ( ( E ` W ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) | 
						
							| 149 | 67 | eqcomd |  |-  ( ph -> ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) = ( E ` W ) ) | 
						
							| 150 | 69 71 130 | subadd2d |  |-  ( ph -> ( ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) = W <-> ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) = ( E ` W ) ) ) | 
						
							| 151 | 149 150 | mpbird |  |-  ( ph -> ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) = W ) | 
						
							| 152 | 151 | eqcomd |  |-  ( ph -> W = ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) ) | 
						
							| 153 | 152 | oveq1d |  |-  ( ph -> ( W + T ) = ( ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) + T ) ) | 
						
							| 154 | 153 | adantr |  |-  ( ( ph /\ W < Z ) -> ( W + T ) = ( ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) + T ) ) | 
						
							| 155 | 118 | eqcomd |  |-  ( ph -> ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) = ( E ` Z ) ) | 
						
							| 156 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 157 |  | iocssre |  |-  ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) | 
						
							| 158 | 156 2 157 | syl2anc |  |-  ( ph -> ( A (,] B ) C_ RR ) | 
						
							| 159 | 1 2 3 6 7 | fourierdlem4 |  |-  ( ph -> E : RR --> ( A (,] B ) ) | 
						
							| 160 | 159 30 | ffvelcdmd |  |-  ( ph -> ( E ` Z ) e. ( A (,] B ) ) | 
						
							| 161 | 158 160 | sseldd |  |-  ( ph -> ( E ` Z ) e. RR ) | 
						
							| 162 | 161 | recnd |  |-  ( ph -> ( E ` Z ) e. CC ) | 
						
							| 163 | 162 88 121 | subadd2d |  |-  ( ph -> ( ( ( E ` Z ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) = Z <-> ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) = ( E ` Z ) ) ) | 
						
							| 164 | 155 163 | mpbird |  |-  ( ph -> ( ( E ` Z ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) = Z ) | 
						
							| 165 | 10 | oveq1d |  |-  ( ph -> ( ( E ` Z ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) = ( ( E ` W ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) | 
						
							| 166 | 164 165 | eqtr3d |  |-  ( ph -> Z = ( ( E ` W ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) | 
						
							| 167 | 166 | adantr |  |-  ( ( ph /\ W < Z ) -> Z = ( ( E ` W ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) | 
						
							| 168 | 148 154 167 | 3brtr4d |  |-  ( ( ph /\ W < Z ) -> ( W + T ) <_ Z ) | 
						
							| 169 | 21 29 31 48 168 | ltletrd |  |-  ( ( ph /\ W < Z ) -> ( B + X ) < Z ) | 
						
							| 170 | 21 31 | ltnled |  |-  ( ( ph /\ W < Z ) -> ( ( B + X ) < Z <-> -. Z <_ ( B + X ) ) ) | 
						
							| 171 | 169 170 | mpbid |  |-  ( ( ph /\ W < Z ) -> -. Z <_ ( B + X ) ) | 
						
							| 172 | 20 171 | pm2.65da |  |-  ( ph -> -. W < Z ) |