| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem20.m |
|- ( ph -> M e. NN ) |
| 2 |
|
fourierdlem20.a |
|- ( ph -> A e. RR ) |
| 3 |
|
fourierdlem20.b |
|- ( ph -> B e. RR ) |
| 4 |
|
fourierdlem20.aleb |
|- ( ph -> A <_ B ) |
| 5 |
|
fourierdlem20.q |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 6 |
|
fourierdlem20.q0 |
|- ( ph -> ( Q ` 0 ) <_ A ) |
| 7 |
|
fourierdlem20.qm |
|- ( ph -> B <_ ( Q ` M ) ) |
| 8 |
|
fourierdlem20.j |
|- ( ph -> J e. ( 0 ..^ N ) ) |
| 9 |
|
fourierdlem20.t |
|- T = ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) |
| 10 |
|
fourierdlem20.s |
|- ( ph -> S Isom < , < ( ( 0 ... N ) , T ) ) |
| 11 |
|
fourierdlem20.i |
|- I = sup ( { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } , RR , < ) |
| 12 |
|
ssrab2 |
|- { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } C_ ( 0 ..^ M ) |
| 13 |
|
fzossfz |
|- ( 0 ..^ M ) C_ ( 0 ... M ) |
| 14 |
|
fzssz |
|- ( 0 ... M ) C_ ZZ |
| 15 |
13 14
|
sstri |
|- ( 0 ..^ M ) C_ ZZ |
| 16 |
12 15
|
sstri |
|- { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } C_ ZZ |
| 17 |
16
|
a1i |
|- ( ph -> { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } C_ ZZ ) |
| 18 |
|
0z |
|- 0 e. ZZ |
| 19 |
|
0le0 |
|- 0 <_ 0 |
| 20 |
|
eluz2 |
|- ( 0 e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ 0 e. ZZ /\ 0 <_ 0 ) ) |
| 21 |
18 18 19 20
|
mpbir3an |
|- 0 e. ( ZZ>= ` 0 ) |
| 22 |
21
|
a1i |
|- ( ph -> 0 e. ( ZZ>= ` 0 ) ) |
| 23 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 24 |
1
|
nngt0d |
|- ( ph -> 0 < M ) |
| 25 |
|
elfzo2 |
|- ( 0 e. ( 0 ..^ M ) <-> ( 0 e. ( ZZ>= ` 0 ) /\ M e. ZZ /\ 0 < M ) ) |
| 26 |
22 23 24 25
|
syl3anbrc |
|- ( ph -> 0 e. ( 0 ..^ M ) ) |
| 27 |
13 26
|
sselid |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 28 |
5 27
|
ffvelcdmd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
| 29 |
2
|
rexrd |
|- ( ph -> A e. RR* ) |
| 30 |
3
|
rexrd |
|- ( ph -> B e. RR* ) |
| 31 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
| 32 |
29 30 4 31
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
| 33 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
| 34 |
29 30 4 33
|
syl3anc |
|- ( ph -> B e. ( A [,] B ) ) |
| 35 |
32 34
|
jca |
|- ( ph -> ( A e. ( A [,] B ) /\ B e. ( A [,] B ) ) ) |
| 36 |
|
prssg |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A e. ( A [,] B ) /\ B e. ( A [,] B ) ) <-> { A , B } C_ ( A [,] B ) ) ) |
| 37 |
29 30 36
|
syl2anc |
|- ( ph -> ( ( A e. ( A [,] B ) /\ B e. ( A [,] B ) ) <-> { A , B } C_ ( A [,] B ) ) ) |
| 38 |
35 37
|
mpbid |
|- ( ph -> { A , B } C_ ( A [,] B ) ) |
| 39 |
|
inss2 |
|- ( ran Q i^i ( A (,) B ) ) C_ ( A (,) B ) |
| 40 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 41 |
39 40
|
sstri |
|- ( ran Q i^i ( A (,) B ) ) C_ ( A [,] B ) |
| 42 |
41
|
a1i |
|- ( ph -> ( ran Q i^i ( A (,) B ) ) C_ ( A [,] B ) ) |
| 43 |
38 42
|
unssd |
|- ( ph -> ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) C_ ( A [,] B ) ) |
| 44 |
9 43
|
eqsstrid |
|- ( ph -> T C_ ( A [,] B ) ) |
| 45 |
2 3
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 46 |
44 45
|
sstrd |
|- ( ph -> T C_ RR ) |
| 47 |
|
isof1o |
|- ( S Isom < , < ( ( 0 ... N ) , T ) -> S : ( 0 ... N ) -1-1-onto-> T ) |
| 48 |
|
f1of |
|- ( S : ( 0 ... N ) -1-1-onto-> T -> S : ( 0 ... N ) --> T ) |
| 49 |
10 47 48
|
3syl |
|- ( ph -> S : ( 0 ... N ) --> T ) |
| 50 |
|
elfzofz |
|- ( J e. ( 0 ..^ N ) -> J e. ( 0 ... N ) ) |
| 51 |
8 50
|
syl |
|- ( ph -> J e. ( 0 ... N ) ) |
| 52 |
49 51
|
ffvelcdmd |
|- ( ph -> ( S ` J ) e. T ) |
| 53 |
46 52
|
sseldd |
|- ( ph -> ( S ` J ) e. RR ) |
| 54 |
44 52
|
sseldd |
|- ( ph -> ( S ` J ) e. ( A [,] B ) ) |
| 55 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ ( S ` J ) e. ( A [,] B ) ) -> A <_ ( S ` J ) ) |
| 56 |
29 30 54 55
|
syl3anc |
|- ( ph -> A <_ ( S ` J ) ) |
| 57 |
28 2 53 6 56
|
letrd |
|- ( ph -> ( Q ` 0 ) <_ ( S ` J ) ) |
| 58 |
|
fveq2 |
|- ( k = 0 -> ( Q ` k ) = ( Q ` 0 ) ) |
| 59 |
58
|
breq1d |
|- ( k = 0 -> ( ( Q ` k ) <_ ( S ` J ) <-> ( Q ` 0 ) <_ ( S ` J ) ) ) |
| 60 |
59
|
elrab |
|- ( 0 e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } <-> ( 0 e. ( 0 ..^ M ) /\ ( Q ` 0 ) <_ ( S ` J ) ) ) |
| 61 |
26 57 60
|
sylanbrc |
|- ( ph -> 0 e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } ) |
| 62 |
61
|
ne0d |
|- ( ph -> { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } =/= (/) ) |
| 63 |
1
|
nnred |
|- ( ph -> M e. RR ) |
| 64 |
12
|
sseli |
|- ( j e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } -> j e. ( 0 ..^ M ) ) |
| 65 |
|
elfzo0le |
|- ( j e. ( 0 ..^ M ) -> j <_ M ) |
| 66 |
64 65
|
syl |
|- ( j e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } -> j <_ M ) |
| 67 |
66
|
adantl |
|- ( ( ph /\ j e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } ) -> j <_ M ) |
| 68 |
67
|
ralrimiva |
|- ( ph -> A. j e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } j <_ M ) |
| 69 |
|
breq2 |
|- ( x = M -> ( j <_ x <-> j <_ M ) ) |
| 70 |
69
|
ralbidv |
|- ( x = M -> ( A. j e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } j <_ x <-> A. j e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } j <_ M ) ) |
| 71 |
70
|
rspcev |
|- ( ( M e. RR /\ A. j e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } j <_ M ) -> E. x e. RR A. j e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } j <_ x ) |
| 72 |
63 68 71
|
syl2anc |
|- ( ph -> E. x e. RR A. j e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } j <_ x ) |
| 73 |
|
suprzcl |
|- ( ( { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } C_ ZZ /\ { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } =/= (/) /\ E. x e. RR A. j e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } j <_ x ) -> sup ( { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } , RR , < ) e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } ) |
| 74 |
17 62 72 73
|
syl3anc |
|- ( ph -> sup ( { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } , RR , < ) e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } ) |
| 75 |
12 74
|
sselid |
|- ( ph -> sup ( { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } , RR , < ) e. ( 0 ..^ M ) ) |
| 76 |
11 75
|
eqeltrid |
|- ( ph -> I e. ( 0 ..^ M ) ) |
| 77 |
13 76
|
sselid |
|- ( ph -> I e. ( 0 ... M ) ) |
| 78 |
5 77
|
ffvelcdmd |
|- ( ph -> ( Q ` I ) e. RR ) |
| 79 |
78
|
rexrd |
|- ( ph -> ( Q ` I ) e. RR* ) |
| 80 |
|
fzofzp1 |
|- ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. ( 0 ... M ) ) |
| 81 |
76 80
|
syl |
|- ( ph -> ( I + 1 ) e. ( 0 ... M ) ) |
| 82 |
5 81
|
ffvelcdmd |
|- ( ph -> ( Q ` ( I + 1 ) ) e. RR ) |
| 83 |
82
|
rexrd |
|- ( ph -> ( Q ` ( I + 1 ) ) e. RR* ) |
| 84 |
11 74
|
eqeltrid |
|- ( ph -> I e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } ) |
| 85 |
|
nfrab1 |
|- F/_ k { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } |
| 86 |
|
nfcv |
|- F/_ k RR |
| 87 |
|
nfcv |
|- F/_ k < |
| 88 |
85 86 87
|
nfsup |
|- F/_ k sup ( { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } , RR , < ) |
| 89 |
11 88
|
nfcxfr |
|- F/_ k I |
| 90 |
|
nfcv |
|- F/_ k ( 0 ..^ M ) |
| 91 |
|
nfcv |
|- F/_ k Q |
| 92 |
91 89
|
nffv |
|- F/_ k ( Q ` I ) |
| 93 |
|
nfcv |
|- F/_ k <_ |
| 94 |
|
nfcv |
|- F/_ k ( S ` J ) |
| 95 |
92 93 94
|
nfbr |
|- F/ k ( Q ` I ) <_ ( S ` J ) |
| 96 |
|
fveq2 |
|- ( k = I -> ( Q ` k ) = ( Q ` I ) ) |
| 97 |
96
|
breq1d |
|- ( k = I -> ( ( Q ` k ) <_ ( S ` J ) <-> ( Q ` I ) <_ ( S ` J ) ) ) |
| 98 |
89 90 95 97
|
elrabf |
|- ( I e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } <-> ( I e. ( 0 ..^ M ) /\ ( Q ` I ) <_ ( S ` J ) ) ) |
| 99 |
84 98
|
sylib |
|- ( ph -> ( I e. ( 0 ..^ M ) /\ ( Q ` I ) <_ ( S ` J ) ) ) |
| 100 |
99
|
simprd |
|- ( ph -> ( Q ` I ) <_ ( S ` J ) ) |
| 101 |
|
simpr |
|- ( ( ph /\ -. ( S ` ( J + 1 ) ) <_ ( Q ` ( I + 1 ) ) ) -> -. ( S ` ( J + 1 ) ) <_ ( Q ` ( I + 1 ) ) ) |
| 102 |
83
|
adantr |
|- ( ( ph /\ -. ( S ` ( J + 1 ) ) <_ ( Q ` ( I + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. RR* ) |
| 103 |
|
iccssxr |
|- ( A [,] B ) C_ RR* |
| 104 |
44 103
|
sstrdi |
|- ( ph -> T C_ RR* ) |
| 105 |
|
fzofzp1 |
|- ( J e. ( 0 ..^ N ) -> ( J + 1 ) e. ( 0 ... N ) ) |
| 106 |
8 105
|
syl |
|- ( ph -> ( J + 1 ) e. ( 0 ... N ) ) |
| 107 |
49 106
|
ffvelcdmd |
|- ( ph -> ( S ` ( J + 1 ) ) e. T ) |
| 108 |
104 107
|
sseldd |
|- ( ph -> ( S ` ( J + 1 ) ) e. RR* ) |
| 109 |
108
|
adantr |
|- ( ( ph /\ -. ( S ` ( J + 1 ) ) <_ ( Q ` ( I + 1 ) ) ) -> ( S ` ( J + 1 ) ) e. RR* ) |
| 110 |
|
xrltnle |
|- ( ( ( Q ` ( I + 1 ) ) e. RR* /\ ( S ` ( J + 1 ) ) e. RR* ) -> ( ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) <-> -. ( S ` ( J + 1 ) ) <_ ( Q ` ( I + 1 ) ) ) ) |
| 111 |
102 109 110
|
syl2anc |
|- ( ( ph /\ -. ( S ` ( J + 1 ) ) <_ ( Q ` ( I + 1 ) ) ) -> ( ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) <-> -. ( S ` ( J + 1 ) ) <_ ( Q ` ( I + 1 ) ) ) ) |
| 112 |
101 111
|
mpbird |
|- ( ( ph /\ -. ( S ` ( J + 1 ) ) <_ ( Q ` ( I + 1 ) ) ) -> ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) |
| 113 |
|
fzssz |
|- ( 0 ... N ) C_ ZZ |
| 114 |
|
f1ofo |
|- ( S : ( 0 ... N ) -1-1-onto-> T -> S : ( 0 ... N ) -onto-> T ) |
| 115 |
10 47 114
|
3syl |
|- ( ph -> S : ( 0 ... N ) -onto-> T ) |
| 116 |
115
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> S : ( 0 ... N ) -onto-> T ) |
| 117 |
|
ffun |
|- ( Q : ( 0 ... M ) --> RR -> Fun Q ) |
| 118 |
5 117
|
syl |
|- ( ph -> Fun Q ) |
| 119 |
5
|
fdmd |
|- ( ph -> dom Q = ( 0 ... M ) ) |
| 120 |
119
|
eqcomd |
|- ( ph -> ( 0 ... M ) = dom Q ) |
| 121 |
81 120
|
eleqtrd |
|- ( ph -> ( I + 1 ) e. dom Q ) |
| 122 |
|
fvelrn |
|- ( ( Fun Q /\ ( I + 1 ) e. dom Q ) -> ( Q ` ( I + 1 ) ) e. ran Q ) |
| 123 |
118 121 122
|
syl2anc |
|- ( ph -> ( Q ` ( I + 1 ) ) e. ran Q ) |
| 124 |
123
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. ran Q ) |
| 125 |
29
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> A e. RR* ) |
| 126 |
30
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> B e. RR* ) |
| 127 |
82
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. RR ) |
| 128 |
45 54
|
sseldd |
|- ( ph -> ( S ` J ) e. RR ) |
| 129 |
14
|
sseli |
|- ( I e. ( 0 ... M ) -> I e. ZZ ) |
| 130 |
|
zre |
|- ( I e. ZZ -> I e. RR ) |
| 131 |
77 129 130
|
3syl |
|- ( ph -> I e. RR ) |
| 132 |
131
|
adantr |
|- ( ( ph /\ -. ( S ` J ) < ( Q ` ( I + 1 ) ) ) -> I e. RR ) |
| 133 |
132
|
ltp1d |
|- ( ( ph /\ -. ( S ` J ) < ( Q ` ( I + 1 ) ) ) -> I < ( I + 1 ) ) |
| 134 |
133
|
adantlr |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. RR ) /\ -. ( S ` J ) < ( Q ` ( I + 1 ) ) ) -> I < ( I + 1 ) ) |
| 135 |
|
simplr |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. RR ) /\ -. ( S ` J ) < ( Q ` ( I + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. RR ) |
| 136 |
128
|
ad2antrr |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. RR ) /\ -. ( S ` J ) < ( Q ` ( I + 1 ) ) ) -> ( S ` J ) e. RR ) |
| 137 |
|
simpr |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. RR ) /\ -. ( S ` J ) < ( Q ` ( I + 1 ) ) ) -> -. ( S ` J ) < ( Q ` ( I + 1 ) ) ) |
| 138 |
135 136 137
|
nltled |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. RR ) /\ -. ( S ` J ) < ( Q ` ( I + 1 ) ) ) -> ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) |
| 139 |
131
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> I e. RR ) |
| 140 |
|
1red |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> 1 e. RR ) |
| 141 |
139 140
|
readdcld |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> ( I + 1 ) e. RR ) |
| 142 |
|
elfzoelz |
|- ( j e. ( 0 ..^ M ) -> j e. ZZ ) |
| 143 |
142
|
zred |
|- ( j e. ( 0 ..^ M ) -> j e. RR ) |
| 144 |
143
|
ssriv |
|- ( 0 ..^ M ) C_ RR |
| 145 |
12 144
|
sstri |
|- { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } C_ RR |
| 146 |
145
|
a1i |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } C_ RR ) |
| 147 |
62
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } =/= (/) ) |
| 148 |
72
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> E. x e. RR A. j e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } j <_ x ) |
| 149 |
82
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> ( Q ` ( I + 1 ) ) e. RR ) |
| 150 |
128
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> ( S ` J ) e. RR ) |
| 151 |
3
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> B e. RR ) |
| 152 |
|
simpr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) |
| 153 |
46 107
|
sseldd |
|- ( ph -> ( S ` ( J + 1 ) ) e. RR ) |
| 154 |
153
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> ( S ` ( J + 1 ) ) e. RR ) |
| 155 |
|
elfzoelz |
|- ( J e. ( 0 ..^ N ) -> J e. ZZ ) |
| 156 |
|
zre |
|- ( J e. ZZ -> J e. RR ) |
| 157 |
8 155 156
|
3syl |
|- ( ph -> J e. RR ) |
| 158 |
157
|
ltp1d |
|- ( ph -> J < ( J + 1 ) ) |
| 159 |
|
isorel |
|- ( ( S Isom < , < ( ( 0 ... N ) , T ) /\ ( J e. ( 0 ... N ) /\ ( J + 1 ) e. ( 0 ... N ) ) ) -> ( J < ( J + 1 ) <-> ( S ` J ) < ( S ` ( J + 1 ) ) ) ) |
| 160 |
10 51 106 159
|
syl12anc |
|- ( ph -> ( J < ( J + 1 ) <-> ( S ` J ) < ( S ` ( J + 1 ) ) ) ) |
| 161 |
158 160
|
mpbid |
|- ( ph -> ( S ` J ) < ( S ` ( J + 1 ) ) ) |
| 162 |
161
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> ( S ` J ) < ( S ` ( J + 1 ) ) ) |
| 163 |
44 107
|
sseldd |
|- ( ph -> ( S ` ( J + 1 ) ) e. ( A [,] B ) ) |
| 164 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ ( S ` ( J + 1 ) ) e. ( A [,] B ) ) -> ( S ` ( J + 1 ) ) <_ B ) |
| 165 |
29 30 163 164
|
syl3anc |
|- ( ph -> ( S ` ( J + 1 ) ) <_ B ) |
| 166 |
165
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> ( S ` ( J + 1 ) ) <_ B ) |
| 167 |
150 154 151 162 166
|
ltletrd |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> ( S ` J ) < B ) |
| 168 |
149 150 151 152 167
|
lelttrd |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> ( Q ` ( I + 1 ) ) < B ) |
| 169 |
168
|
adantr |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> ( Q ` ( I + 1 ) ) < B ) |
| 170 |
3
|
adantr |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> B e. RR ) |
| 171 |
82
|
adantr |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> ( Q ` ( I + 1 ) ) e. RR ) |
| 172 |
7
|
adantr |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> B <_ ( Q ` M ) ) |
| 173 |
23
|
adantr |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> M e. ZZ ) |
| 174 |
81
|
adantr |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> ( I + 1 ) e. ( 0 ... M ) ) |
| 175 |
|
fzval3 |
|- ( M e. ZZ -> ( 0 ... M ) = ( 0 ..^ ( M + 1 ) ) ) |
| 176 |
23 175
|
syl |
|- ( ph -> ( 0 ... M ) = ( 0 ..^ ( M + 1 ) ) ) |
| 177 |
176
|
adantr |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> ( 0 ... M ) = ( 0 ..^ ( M + 1 ) ) ) |
| 178 |
174 177
|
eleqtrd |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> ( I + 1 ) e. ( 0 ..^ ( M + 1 ) ) ) |
| 179 |
|
simpr |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> -. ( I + 1 ) e. ( 0 ..^ M ) ) |
| 180 |
178 179
|
jca |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> ( ( I + 1 ) e. ( 0 ..^ ( M + 1 ) ) /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) ) |
| 181 |
|
elfzonelfzo |
|- ( M e. ZZ -> ( ( ( I + 1 ) e. ( 0 ..^ ( M + 1 ) ) /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> ( I + 1 ) e. ( M ..^ ( M + 1 ) ) ) ) |
| 182 |
173 180 181
|
sylc |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> ( I + 1 ) e. ( M ..^ ( M + 1 ) ) ) |
| 183 |
|
fzval3 |
|- ( M e. ZZ -> ( M ... M ) = ( M ..^ ( M + 1 ) ) ) |
| 184 |
23 183
|
syl |
|- ( ph -> ( M ... M ) = ( M ..^ ( M + 1 ) ) ) |
| 185 |
184
|
eqcomd |
|- ( ph -> ( M ..^ ( M + 1 ) ) = ( M ... M ) ) |
| 186 |
185
|
adantr |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> ( M ..^ ( M + 1 ) ) = ( M ... M ) ) |
| 187 |
182 186
|
eleqtrd |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> ( I + 1 ) e. ( M ... M ) ) |
| 188 |
|
elfz1eq |
|- ( ( I + 1 ) e. ( M ... M ) -> ( I + 1 ) = M ) |
| 189 |
187 188
|
syl |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> ( I + 1 ) = M ) |
| 190 |
189
|
eqcomd |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> M = ( I + 1 ) ) |
| 191 |
190
|
fveq2d |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> ( Q ` M ) = ( Q ` ( I + 1 ) ) ) |
| 192 |
172 191
|
breqtrd |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> B <_ ( Q ` ( I + 1 ) ) ) |
| 193 |
170 171 192
|
lensymd |
|- ( ( ph /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> -. ( Q ` ( I + 1 ) ) < B ) |
| 194 |
193
|
adantlr |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) /\ -. ( I + 1 ) e. ( 0 ..^ M ) ) -> -. ( Q ` ( I + 1 ) ) < B ) |
| 195 |
169 194
|
condan |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> ( I + 1 ) e. ( 0 ..^ M ) ) |
| 196 |
|
nfcv |
|- F/_ k + |
| 197 |
|
nfcv |
|- F/_ k 1 |
| 198 |
89 196 197
|
nfov |
|- F/_ k ( I + 1 ) |
| 199 |
91 198
|
nffv |
|- F/_ k ( Q ` ( I + 1 ) ) |
| 200 |
199 93 94
|
nfbr |
|- F/ k ( Q ` ( I + 1 ) ) <_ ( S ` J ) |
| 201 |
|
fveq2 |
|- ( k = ( I + 1 ) -> ( Q ` k ) = ( Q ` ( I + 1 ) ) ) |
| 202 |
201
|
breq1d |
|- ( k = ( I + 1 ) -> ( ( Q ` k ) <_ ( S ` J ) <-> ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) ) |
| 203 |
198 90 200 202
|
elrabf |
|- ( ( I + 1 ) e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } <-> ( ( I + 1 ) e. ( 0 ..^ M ) /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) ) |
| 204 |
195 152 203
|
sylanbrc |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> ( I + 1 ) e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } ) |
| 205 |
|
suprub |
|- ( ( ( { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } C_ RR /\ { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } =/= (/) /\ E. x e. RR A. j e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } j <_ x ) /\ ( I + 1 ) e. { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } ) -> ( I + 1 ) <_ sup ( { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } , RR , < ) ) |
| 206 |
146 147 148 204 205
|
syl31anc |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> ( I + 1 ) <_ sup ( { k e. ( 0 ..^ M ) | ( Q ` k ) <_ ( S ` J ) } , RR , < ) ) |
| 207 |
206 11
|
breqtrrdi |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> ( I + 1 ) <_ I ) |
| 208 |
141 139 207
|
lensymd |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> -. I < ( I + 1 ) ) |
| 209 |
208
|
adantlr |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. RR ) /\ ( Q ` ( I + 1 ) ) <_ ( S ` J ) ) -> -. I < ( I + 1 ) ) |
| 210 |
138 209
|
syldan |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. RR ) /\ -. ( S ` J ) < ( Q ` ( I + 1 ) ) ) -> -. I < ( I + 1 ) ) |
| 211 |
134 210
|
condan |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) e. RR ) -> ( S ` J ) < ( Q ` ( I + 1 ) ) ) |
| 212 |
82 211
|
mpdan |
|- ( ph -> ( S ` J ) < ( Q ` ( I + 1 ) ) ) |
| 213 |
2 128 82 56 212
|
lelttrd |
|- ( ph -> A < ( Q ` ( I + 1 ) ) ) |
| 214 |
213
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> A < ( Q ` ( I + 1 ) ) ) |
| 215 |
153
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> ( S ` ( J + 1 ) ) e. RR ) |
| 216 |
3
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> B e. RR ) |
| 217 |
|
simpr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) |
| 218 |
165
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> ( S ` ( J + 1 ) ) <_ B ) |
| 219 |
127 215 216 217 218
|
ltletrd |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> ( Q ` ( I + 1 ) ) < B ) |
| 220 |
125 126 127 214 219
|
eliood |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. ( A (,) B ) ) |
| 221 |
124 220
|
elind |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. ( ran Q i^i ( A (,) B ) ) ) |
| 222 |
|
elun2 |
|- ( ( Q ` ( I + 1 ) ) e. ( ran Q i^i ( A (,) B ) ) -> ( Q ` ( I + 1 ) ) e. ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) ) |
| 223 |
221 222
|
syl |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) ) |
| 224 |
223 9
|
eleqtrrdi |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. T ) |
| 225 |
|
foelrn |
|- ( ( S : ( 0 ... N ) -onto-> T /\ ( Q ` ( I + 1 ) ) e. T ) -> E. j e. ( 0 ... N ) ( Q ` ( I + 1 ) ) = ( S ` j ) ) |
| 226 |
116 224 225
|
syl2anc |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> E. j e. ( 0 ... N ) ( Q ` ( I + 1 ) ) = ( S ` j ) ) |
| 227 |
212
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> ( S ` J ) < ( Q ` ( I + 1 ) ) ) |
| 228 |
|
simpr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> ( Q ` ( I + 1 ) ) = ( S ` j ) ) |
| 229 |
227 228
|
breqtrd |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> ( S ` J ) < ( S ` j ) ) |
| 230 |
229
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> ( S ` J ) < ( S ` j ) ) |
| 231 |
10
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> S Isom < , < ( ( 0 ... N ) , T ) ) |
| 232 |
51
|
anim1i |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( J e. ( 0 ... N ) /\ j e. ( 0 ... N ) ) ) |
| 233 |
232
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> ( J e. ( 0 ... N ) /\ j e. ( 0 ... N ) ) ) |
| 234 |
|
isorel |
|- ( ( S Isom < , < ( ( 0 ... N ) , T ) /\ ( J e. ( 0 ... N ) /\ j e. ( 0 ... N ) ) ) -> ( J < j <-> ( S ` J ) < ( S ` j ) ) ) |
| 235 |
231 233 234
|
syl2anc |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> ( J < j <-> ( S ` J ) < ( S ` j ) ) ) |
| 236 |
230 235
|
mpbird |
|- ( ( ( ph /\ j e. ( 0 ... N ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> J < j ) |
| 237 |
236
|
adantllr |
|- ( ( ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) /\ j e. ( 0 ... N ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> J < j ) |
| 238 |
|
eqcom |
|- ( ( Q ` ( I + 1 ) ) = ( S ` j ) <-> ( S ` j ) = ( Q ` ( I + 1 ) ) ) |
| 239 |
238
|
biimpi |
|- ( ( Q ` ( I + 1 ) ) = ( S ` j ) -> ( S ` j ) = ( Q ` ( I + 1 ) ) ) |
| 240 |
239
|
adantl |
|- ( ( ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> ( S ` j ) = ( Q ` ( I + 1 ) ) ) |
| 241 |
|
simpl |
|- ( ( ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) |
| 242 |
240 241
|
eqbrtrd |
|- ( ( ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> ( S ` j ) < ( S ` ( J + 1 ) ) ) |
| 243 |
242
|
adantll |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> ( S ` j ) < ( S ` ( J + 1 ) ) ) |
| 244 |
243
|
adantlr |
|- ( ( ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) /\ j e. ( 0 ... N ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> ( S ` j ) < ( S ` ( J + 1 ) ) ) |
| 245 |
10
|
ad2antrr |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) /\ j e. ( 0 ... N ) ) -> S Isom < , < ( ( 0 ... N ) , T ) ) |
| 246 |
|
simpr |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) /\ j e. ( 0 ... N ) ) -> j e. ( 0 ... N ) ) |
| 247 |
106
|
ad2antrr |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) /\ j e. ( 0 ... N ) ) -> ( J + 1 ) e. ( 0 ... N ) ) |
| 248 |
|
isorel |
|- ( ( S Isom < , < ( ( 0 ... N ) , T ) /\ ( j e. ( 0 ... N ) /\ ( J + 1 ) e. ( 0 ... N ) ) ) -> ( j < ( J + 1 ) <-> ( S ` j ) < ( S ` ( J + 1 ) ) ) ) |
| 249 |
245 246 247 248
|
syl12anc |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) /\ j e. ( 0 ... N ) ) -> ( j < ( J + 1 ) <-> ( S ` j ) < ( S ` ( J + 1 ) ) ) ) |
| 250 |
249
|
adantr |
|- ( ( ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) /\ j e. ( 0 ... N ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> ( j < ( J + 1 ) <-> ( S ` j ) < ( S ` ( J + 1 ) ) ) ) |
| 251 |
244 250
|
mpbird |
|- ( ( ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) /\ j e. ( 0 ... N ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> j < ( J + 1 ) ) |
| 252 |
237 251
|
jca |
|- ( ( ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) /\ j e. ( 0 ... N ) ) /\ ( Q ` ( I + 1 ) ) = ( S ` j ) ) -> ( J < j /\ j < ( J + 1 ) ) ) |
| 253 |
252
|
ex |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) /\ j e. ( 0 ... N ) ) -> ( ( Q ` ( I + 1 ) ) = ( S ` j ) -> ( J < j /\ j < ( J + 1 ) ) ) ) |
| 254 |
253
|
reximdva |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> ( E. j e. ( 0 ... N ) ( Q ` ( I + 1 ) ) = ( S ` j ) -> E. j e. ( 0 ... N ) ( J < j /\ j < ( J + 1 ) ) ) ) |
| 255 |
226 254
|
mpd |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> E. j e. ( 0 ... N ) ( J < j /\ j < ( J + 1 ) ) ) |
| 256 |
|
ssrexv |
|- ( ( 0 ... N ) C_ ZZ -> ( E. j e. ( 0 ... N ) ( J < j /\ j < ( J + 1 ) ) -> E. j e. ZZ ( J < j /\ j < ( J + 1 ) ) ) ) |
| 257 |
113 255 256
|
mpsyl |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) < ( S ` ( J + 1 ) ) ) -> E. j e. ZZ ( J < j /\ j < ( J + 1 ) ) ) |
| 258 |
112 257
|
syldan |
|- ( ( ph /\ -. ( S ` ( J + 1 ) ) <_ ( Q ` ( I + 1 ) ) ) -> E. j e. ZZ ( J < j /\ j < ( J + 1 ) ) ) |
| 259 |
|
simplr |
|- ( ( ( ph /\ j e. ZZ ) /\ ( J < j /\ j < ( J + 1 ) ) ) -> j e. ZZ ) |
| 260 |
8 155
|
syl |
|- ( ph -> J e. ZZ ) |
| 261 |
260
|
ad2antrr |
|- ( ( ( ph /\ j e. ZZ ) /\ ( J < j /\ j < ( J + 1 ) ) ) -> J e. ZZ ) |
| 262 |
|
simprl |
|- ( ( ( ph /\ j e. ZZ ) /\ ( J < j /\ j < ( J + 1 ) ) ) -> J < j ) |
| 263 |
|
simprr |
|- ( ( ( ph /\ j e. ZZ ) /\ ( J < j /\ j < ( J + 1 ) ) ) -> j < ( J + 1 ) ) |
| 264 |
|
btwnnz |
|- ( ( J e. ZZ /\ J < j /\ j < ( J + 1 ) ) -> -. j e. ZZ ) |
| 265 |
261 262 263 264
|
syl3anc |
|- ( ( ( ph /\ j e. ZZ ) /\ ( J < j /\ j < ( J + 1 ) ) ) -> -. j e. ZZ ) |
| 266 |
259 265
|
pm2.65da |
|- ( ( ph /\ j e. ZZ ) -> -. ( J < j /\ j < ( J + 1 ) ) ) |
| 267 |
266
|
nrexdv |
|- ( ph -> -. E. j e. ZZ ( J < j /\ j < ( J + 1 ) ) ) |
| 268 |
267
|
adantr |
|- ( ( ph /\ -. ( S ` ( J + 1 ) ) <_ ( Q ` ( I + 1 ) ) ) -> -. E. j e. ZZ ( J < j /\ j < ( J + 1 ) ) ) |
| 269 |
258 268
|
condan |
|- ( ph -> ( S ` ( J + 1 ) ) <_ ( Q ` ( I + 1 ) ) ) |
| 270 |
|
ioossioo |
|- ( ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* ) /\ ( ( Q ` I ) <_ ( S ` J ) /\ ( S ` ( J + 1 ) ) <_ ( Q ` ( I + 1 ) ) ) ) -> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) |
| 271 |
79 83 100 269 270
|
syl22anc |
|- ( ph -> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) |
| 272 |
|
fveq2 |
|- ( i = I -> ( Q ` i ) = ( Q ` I ) ) |
| 273 |
|
oveq1 |
|- ( i = I -> ( i + 1 ) = ( I + 1 ) ) |
| 274 |
273
|
fveq2d |
|- ( i = I -> ( Q ` ( i + 1 ) ) = ( Q ` ( I + 1 ) ) ) |
| 275 |
272 274
|
oveq12d |
|- ( i = I -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) |
| 276 |
275
|
sseq2d |
|- ( i = I -> ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) ) |
| 277 |
276
|
rspcev |
|- ( ( I e. ( 0 ..^ M ) /\ ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> E. i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 278 |
76 271 277
|
syl2anc |
|- ( ph -> E. i e. ( 0 ..^ M ) ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |