Metamath Proof Explorer


Theorem fourierdlem20

Description: Every interval in the partition S is included in an interval of the partition Q . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem20.m φM
fourierdlem20.a φA
fourierdlem20.b φB
fourierdlem20.aleb φAB
fourierdlem20.q φQ:0M
fourierdlem20.q0 φQ0A
fourierdlem20.qm φBQM
fourierdlem20.j φJ0..^N
fourierdlem20.t T=ABranQAB
fourierdlem20.s φSIsom<,<0NT
fourierdlem20.i I=supk0..^M|QkSJ<
Assertion fourierdlem20 φi0..^MSJSJ+1QiQi+1

Proof

Step Hyp Ref Expression
1 fourierdlem20.m φM
2 fourierdlem20.a φA
3 fourierdlem20.b φB
4 fourierdlem20.aleb φAB
5 fourierdlem20.q φQ:0M
6 fourierdlem20.q0 φQ0A
7 fourierdlem20.qm φBQM
8 fourierdlem20.j φJ0..^N
9 fourierdlem20.t T=ABranQAB
10 fourierdlem20.s φSIsom<,<0NT
11 fourierdlem20.i I=supk0..^M|QkSJ<
12 ssrab2 k0..^M|QkSJ0..^M
13 fzossfz 0..^M0M
14 fzssz 0M
15 13 14 sstri 0..^M
16 12 15 sstri k0..^M|QkSJ
17 16 a1i φk0..^M|QkSJ
18 0z 0
19 0le0 00
20 eluz2 000000
21 18 18 19 20 mpbir3an 00
22 21 a1i φ00
23 1 nnzd φM
24 1 nngt0d φ0<M
25 elfzo2 00..^M00M0<M
26 22 23 24 25 syl3anbrc φ00..^M
27 13 26 sselid φ00M
28 5 27 ffvelcdmd φQ0
29 2 rexrd φA*
30 3 rexrd φB*
31 lbicc2 A*B*ABAAB
32 29 30 4 31 syl3anc φAAB
33 ubicc2 A*B*ABBAB
34 29 30 4 33 syl3anc φBAB
35 32 34 jca φAABBAB
36 prssg A*B*AABBABABAB
37 29 30 36 syl2anc φAABBABABAB
38 35 37 mpbid φABAB
39 inss2 ranQABAB
40 ioossicc ABAB
41 39 40 sstri ranQABAB
42 41 a1i φranQABAB
43 38 42 unssd φABranQABAB
44 9 43 eqsstrid φTAB
45 2 3 iccssred φAB
46 44 45 sstrd φT
47 isof1o SIsom<,<0NTS:0N1-1 ontoT
48 f1of S:0N1-1 ontoTS:0NT
49 10 47 48 3syl φS:0NT
50 elfzofz J0..^NJ0N
51 8 50 syl φJ0N
52 49 51 ffvelcdmd φSJT
53 46 52 sseldd φSJ
54 44 52 sseldd φSJAB
55 iccgelb A*B*SJABASJ
56 29 30 54 55 syl3anc φASJ
57 28 2 53 6 56 letrd φQ0SJ
58 fveq2 k=0Qk=Q0
59 58 breq1d k=0QkSJQ0SJ
60 59 elrab 0k0..^M|QkSJ00..^MQ0SJ
61 26 57 60 sylanbrc φ0k0..^M|QkSJ
62 61 ne0d φk0..^M|QkSJ
63 1 nnred φM
64 12 sseli jk0..^M|QkSJj0..^M
65 elfzo0le j0..^MjM
66 64 65 syl jk0..^M|QkSJjM
67 66 adantl φjk0..^M|QkSJjM
68 67 ralrimiva φjk0..^M|QkSJjM
69 breq2 x=MjxjM
70 69 ralbidv x=Mjk0..^M|QkSJjxjk0..^M|QkSJjM
71 70 rspcev Mjk0..^M|QkSJjMxjk0..^M|QkSJjx
72 63 68 71 syl2anc φxjk0..^M|QkSJjx
73 suprzcl k0..^M|QkSJk0..^M|QkSJxjk0..^M|QkSJjxsupk0..^M|QkSJ<k0..^M|QkSJ
74 17 62 72 73 syl3anc φsupk0..^M|QkSJ<k0..^M|QkSJ
75 12 74 sselid φsupk0..^M|QkSJ<0..^M
76 11 75 eqeltrid φI0..^M
77 13 76 sselid φI0M
78 5 77 ffvelcdmd φQI
79 78 rexrd φQI*
80 fzofzp1 I0..^MI+10M
81 76 80 syl φI+10M
82 5 81 ffvelcdmd φQI+1
83 82 rexrd φQI+1*
84 11 74 eqeltrid φIk0..^M|QkSJ
85 nfrab1 _kk0..^M|QkSJ
86 nfcv _k
87 nfcv _k<
88 85 86 87 nfsup _ksupk0..^M|QkSJ<
89 11 88 nfcxfr _kI
90 nfcv _k0..^M
91 nfcv _kQ
92 91 89 nffv _kQI
93 nfcv _k
94 nfcv _kSJ
95 92 93 94 nfbr kQISJ
96 fveq2 k=IQk=QI
97 96 breq1d k=IQkSJQISJ
98 89 90 95 97 elrabf Ik0..^M|QkSJI0..^MQISJ
99 84 98 sylib φI0..^MQISJ
100 99 simprd φQISJ
101 simpr φ¬SJ+1QI+1¬SJ+1QI+1
102 83 adantr φ¬SJ+1QI+1QI+1*
103 iccssxr AB*
104 44 103 sstrdi φT*
105 fzofzp1 J0..^NJ+10N
106 8 105 syl φJ+10N
107 49 106 ffvelcdmd φSJ+1T
108 104 107 sseldd φSJ+1*
109 108 adantr φ¬SJ+1QI+1SJ+1*
110 xrltnle QI+1*SJ+1*QI+1<SJ+1¬SJ+1QI+1
111 102 109 110 syl2anc φ¬SJ+1QI+1QI+1<SJ+1¬SJ+1QI+1
112 101 111 mpbird φ¬SJ+1QI+1QI+1<SJ+1
113 fzssz 0N
114 f1ofo S:0N1-1 ontoTS:0NontoT
115 10 47 114 3syl φS:0NontoT
116 115 adantr φQI+1<SJ+1S:0NontoT
117 ffun Q:0MFunQ
118 5 117 syl φFunQ
119 5 fdmd φdomQ=0M
120 119 eqcomd φ0M=domQ
121 81 120 eleqtrd φI+1domQ
122 fvelrn FunQI+1domQQI+1ranQ
123 118 121 122 syl2anc φQI+1ranQ
124 123 adantr φQI+1<SJ+1QI+1ranQ
125 29 adantr φQI+1<SJ+1A*
126 30 adantr φQI+1<SJ+1B*
127 82 adantr φQI+1<SJ+1QI+1
128 45 54 sseldd φSJ
129 14 sseli I0MI
130 zre II
131 77 129 130 3syl φI
132 131 adantr φ¬SJ<QI+1I
133 132 ltp1d φ¬SJ<QI+1I<I+1
134 133 adantlr φQI+1¬SJ<QI+1I<I+1
135 simplr φQI+1¬SJ<QI+1QI+1
136 128 ad2antrr φQI+1¬SJ<QI+1SJ
137 simpr φQI+1¬SJ<QI+1¬SJ<QI+1
138 135 136 137 nltled φQI+1¬SJ<QI+1QI+1SJ
139 131 adantr φQI+1SJI
140 1red φQI+1SJ1
141 139 140 readdcld φQI+1SJI+1
142 elfzoelz j0..^Mj
143 142 zred j0..^Mj
144 143 ssriv 0..^M
145 12 144 sstri k0..^M|QkSJ
146 145 a1i φQI+1SJk0..^M|QkSJ
147 62 adantr φQI+1SJk0..^M|QkSJ
148 72 adantr φQI+1SJxjk0..^M|QkSJjx
149 82 adantr φQI+1SJQI+1
150 128 adantr φQI+1SJSJ
151 3 adantr φQI+1SJB
152 simpr φQI+1SJQI+1SJ
153 46 107 sseldd φSJ+1
154 153 adantr φQI+1SJSJ+1
155 elfzoelz J0..^NJ
156 zre JJ
157 8 155 156 3syl φJ
158 157 ltp1d φJ<J+1
159 isorel SIsom<,<0NTJ0NJ+10NJ<J+1SJ<SJ+1
160 10 51 106 159 syl12anc φJ<J+1SJ<SJ+1
161 158 160 mpbid φSJ<SJ+1
162 161 adantr φQI+1SJSJ<SJ+1
163 44 107 sseldd φSJ+1AB
164 iccleub A*B*SJ+1ABSJ+1B
165 29 30 163 164 syl3anc φSJ+1B
166 165 adantr φQI+1SJSJ+1B
167 150 154 151 162 166 ltletrd φQI+1SJSJ<B
168 149 150 151 152 167 lelttrd φQI+1SJQI+1<B
169 168 adantr φQI+1SJ¬I+10..^MQI+1<B
170 3 adantr φ¬I+10..^MB
171 82 adantr φ¬I+10..^MQI+1
172 7 adantr φ¬I+10..^MBQM
173 23 adantr φ¬I+10..^MM
174 81 adantr φ¬I+10..^MI+10M
175 fzval3 M0M=0..^M+1
176 23 175 syl φ0M=0..^M+1
177 176 adantr φ¬I+10..^M0M=0..^M+1
178 174 177 eleqtrd φ¬I+10..^MI+10..^M+1
179 simpr φ¬I+10..^M¬I+10..^M
180 178 179 jca φ¬I+10..^MI+10..^M+1¬I+10..^M
181 elfzonelfzo MI+10..^M+1¬I+10..^MI+1M..^M+1
182 173 180 181 sylc φ¬I+10..^MI+1M..^M+1
183 fzval3 MMM=M..^M+1
184 23 183 syl φMM=M..^M+1
185 184 eqcomd φM..^M+1=MM
186 185 adantr φ¬I+10..^MM..^M+1=MM
187 182 186 eleqtrd φ¬I+10..^MI+1MM
188 elfz1eq I+1MMI+1=M
189 187 188 syl φ¬I+10..^MI+1=M
190 189 eqcomd φ¬I+10..^MM=I+1
191 190 fveq2d φ¬I+10..^MQM=QI+1
192 172 191 breqtrd φ¬I+10..^MBQI+1
193 170 171 192 lensymd φ¬I+10..^M¬QI+1<B
194 193 adantlr φQI+1SJ¬I+10..^M¬QI+1<B
195 169 194 condan φQI+1SJI+10..^M
196 nfcv _k+
197 nfcv _k1
198 89 196 197 nfov _kI+1
199 91 198 nffv _kQI+1
200 199 93 94 nfbr kQI+1SJ
201 fveq2 k=I+1Qk=QI+1
202 201 breq1d k=I+1QkSJQI+1SJ
203 198 90 200 202 elrabf I+1k0..^M|QkSJI+10..^MQI+1SJ
204 195 152 203 sylanbrc φQI+1SJI+1k0..^M|QkSJ
205 suprub k0..^M|QkSJk0..^M|QkSJxjk0..^M|QkSJjxI+1k0..^M|QkSJI+1supk0..^M|QkSJ<
206 146 147 148 204 205 syl31anc φQI+1SJI+1supk0..^M|QkSJ<
207 206 11 breqtrrdi φQI+1SJI+1I
208 141 139 207 lensymd φQI+1SJ¬I<I+1
209 208 adantlr φQI+1QI+1SJ¬I<I+1
210 138 209 syldan φQI+1¬SJ<QI+1¬I<I+1
211 134 210 condan φQI+1SJ<QI+1
212 82 211 mpdan φSJ<QI+1
213 2 128 82 56 212 lelttrd φA<QI+1
214 213 adantr φQI+1<SJ+1A<QI+1
215 153 adantr φQI+1<SJ+1SJ+1
216 3 adantr φQI+1<SJ+1B
217 simpr φQI+1<SJ+1QI+1<SJ+1
218 165 adantr φQI+1<SJ+1SJ+1B
219 127 215 216 217 218 ltletrd φQI+1<SJ+1QI+1<B
220 125 126 127 214 219 eliood φQI+1<SJ+1QI+1AB
221 124 220 elind φQI+1<SJ+1QI+1ranQAB
222 elun2 QI+1ranQABQI+1ABranQAB
223 221 222 syl φQI+1<SJ+1QI+1ABranQAB
224 223 9 eleqtrrdi φQI+1<SJ+1QI+1T
225 foelrn S:0NontoTQI+1Tj0NQI+1=Sj
226 116 224 225 syl2anc φQI+1<SJ+1j0NQI+1=Sj
227 212 adantr φQI+1=SjSJ<QI+1
228 simpr φQI+1=SjQI+1=Sj
229 227 228 breqtrd φQI+1=SjSJ<Sj
230 229 adantlr φj0NQI+1=SjSJ<Sj
231 10 ad2antrr φj0NQI+1=SjSIsom<,<0NT
232 51 anim1i φj0NJ0Nj0N
233 232 adantr φj0NQI+1=SjJ0Nj0N
234 isorel SIsom<,<0NTJ0Nj0NJ<jSJ<Sj
235 231 233 234 syl2anc φj0NQI+1=SjJ<jSJ<Sj
236 230 235 mpbird φj0NQI+1=SjJ<j
237 236 adantllr φQI+1<SJ+1j0NQI+1=SjJ<j
238 eqcom QI+1=SjSj=QI+1
239 238 biimpi QI+1=SjSj=QI+1
240 239 adantl QI+1<SJ+1QI+1=SjSj=QI+1
241 simpl QI+1<SJ+1QI+1=SjQI+1<SJ+1
242 240 241 eqbrtrd QI+1<SJ+1QI+1=SjSj<SJ+1
243 242 adantll φQI+1<SJ+1QI+1=SjSj<SJ+1
244 243 adantlr φQI+1<SJ+1j0NQI+1=SjSj<SJ+1
245 10 ad2antrr φQI+1<SJ+1j0NSIsom<,<0NT
246 simpr φQI+1<SJ+1j0Nj0N
247 106 ad2antrr φQI+1<SJ+1j0NJ+10N
248 isorel SIsom<,<0NTj0NJ+10Nj<J+1Sj<SJ+1
249 245 246 247 248 syl12anc φQI+1<SJ+1j0Nj<J+1Sj<SJ+1
250 249 adantr φQI+1<SJ+1j0NQI+1=Sjj<J+1Sj<SJ+1
251 244 250 mpbird φQI+1<SJ+1j0NQI+1=Sjj<J+1
252 237 251 jca φQI+1<SJ+1j0NQI+1=SjJ<jj<J+1
253 252 ex φQI+1<SJ+1j0NQI+1=SjJ<jj<J+1
254 253 reximdva φQI+1<SJ+1j0NQI+1=Sjj0NJ<jj<J+1
255 226 254 mpd φQI+1<SJ+1j0NJ<jj<J+1
256 ssrexv 0Nj0NJ<jj<J+1jJ<jj<J+1
257 113 255 256 mpsyl φQI+1<SJ+1jJ<jj<J+1
258 112 257 syldan φ¬SJ+1QI+1jJ<jj<J+1
259 simplr φjJ<jj<J+1j
260 8 155 syl φJ
261 260 ad2antrr φjJ<jj<J+1J
262 simprl φjJ<jj<J+1J<j
263 simprr φjJ<jj<J+1j<J+1
264 btwnnz JJ<jj<J+1¬j
265 261 262 263 264 syl3anc φjJ<jj<J+1¬j
266 259 265 pm2.65da φj¬J<jj<J+1
267 266 nrexdv φ¬jJ<jj<J+1
268 267 adantr φ¬SJ+1QI+1¬jJ<jj<J+1
269 258 268 condan φSJ+1QI+1
270 ioossioo QI*QI+1*QISJSJ+1QI+1SJSJ+1QIQI+1
271 79 83 100 269 270 syl22anc φSJSJ+1QIQI+1
272 fveq2 i=IQi=QI
273 oveq1 i=Ii+1=I+1
274 273 fveq2d i=IQi+1=QI+1
275 272 274 oveq12d i=IQiQi+1=QIQI+1
276 275 sseq2d i=ISJSJ+1QiQi+1SJSJ+1QIQI+1
277 276 rspcev I0..^MSJSJ+1QIQI+1i0..^MSJSJ+1QiQi+1
278 76 271 277 syl2anc φi0..^MSJSJ+1QiQi+1