Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem4.a |
|- ( ph -> A e. RR ) |
2 |
|
fourierdlem4.b |
|- ( ph -> B e. RR ) |
3 |
|
fourierdlem4.altb |
|- ( ph -> A < B ) |
4 |
|
fourierdlem4.t |
|- T = ( B - A ) |
5 |
|
fourierdlem4.e |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
6 |
|
simpr |
|- ( ( ph /\ x e. RR ) -> x e. RR ) |
7 |
2
|
adantr |
|- ( ( ph /\ x e. RR ) -> B e. RR ) |
8 |
7 6
|
resubcld |
|- ( ( ph /\ x e. RR ) -> ( B - x ) e. RR ) |
9 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
10 |
4 9
|
eqeltrid |
|- ( ph -> T e. RR ) |
11 |
10
|
adantr |
|- ( ( ph /\ x e. RR ) -> T e. RR ) |
12 |
4
|
a1i |
|- ( ph -> T = ( B - A ) ) |
13 |
2
|
recnd |
|- ( ph -> B e. CC ) |
14 |
1
|
recnd |
|- ( ph -> A e. CC ) |
15 |
1 3
|
gtned |
|- ( ph -> B =/= A ) |
16 |
13 14 15
|
subne0d |
|- ( ph -> ( B - A ) =/= 0 ) |
17 |
12 16
|
eqnetrd |
|- ( ph -> T =/= 0 ) |
18 |
17
|
adantr |
|- ( ( ph /\ x e. RR ) -> T =/= 0 ) |
19 |
8 11 18
|
redivcld |
|- ( ( ph /\ x e. RR ) -> ( ( B - x ) / T ) e. RR ) |
20 |
19
|
flcld |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( B - x ) / T ) ) e. ZZ ) |
21 |
20
|
zred |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( B - x ) / T ) ) e. RR ) |
22 |
21 11
|
remulcld |
|- ( ( ph /\ x e. RR ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) e. RR ) |
23 |
6 22
|
readdcld |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. RR ) |
24 |
1
|
adantr |
|- ( ( ph /\ x e. RR ) -> A e. RR ) |
25 |
24 6
|
resubcld |
|- ( ( ph /\ x e. RR ) -> ( A - x ) e. RR ) |
26 |
25 11 18
|
redivcld |
|- ( ( ph /\ x e. RR ) -> ( ( A - x ) / T ) e. RR ) |
27 |
26 11
|
remulcld |
|- ( ( ph /\ x e. RR ) -> ( ( ( A - x ) / T ) x. T ) e. RR ) |
28 |
13
|
addid1d |
|- ( ph -> ( B + 0 ) = B ) |
29 |
28
|
eqcomd |
|- ( ph -> B = ( B + 0 ) ) |
30 |
13 14
|
subcld |
|- ( ph -> ( B - A ) e. CC ) |
31 |
30
|
subidd |
|- ( ph -> ( ( B - A ) - ( B - A ) ) = 0 ) |
32 |
31
|
eqcomd |
|- ( ph -> 0 = ( ( B - A ) - ( B - A ) ) ) |
33 |
32
|
oveq2d |
|- ( ph -> ( B + 0 ) = ( B + ( ( B - A ) - ( B - A ) ) ) ) |
34 |
13 30 30
|
addsub12d |
|- ( ph -> ( B + ( ( B - A ) - ( B - A ) ) ) = ( ( B - A ) + ( B - ( B - A ) ) ) ) |
35 |
13 14
|
nncand |
|- ( ph -> ( B - ( B - A ) ) = A ) |
36 |
35
|
oveq2d |
|- ( ph -> ( ( B - A ) + ( B - ( B - A ) ) ) = ( ( B - A ) + A ) ) |
37 |
30 14
|
addcomd |
|- ( ph -> ( ( B - A ) + A ) = ( A + ( B - A ) ) ) |
38 |
12
|
eqcomd |
|- ( ph -> ( B - A ) = T ) |
39 |
38
|
oveq2d |
|- ( ph -> ( A + ( B - A ) ) = ( A + T ) ) |
40 |
37 39
|
eqtrd |
|- ( ph -> ( ( B - A ) + A ) = ( A + T ) ) |
41 |
34 36 40
|
3eqtrd |
|- ( ph -> ( B + ( ( B - A ) - ( B - A ) ) ) = ( A + T ) ) |
42 |
29 33 41
|
3eqtrd |
|- ( ph -> B = ( A + T ) ) |
43 |
42
|
adantr |
|- ( ( ph /\ x e. RR ) -> B = ( A + T ) ) |
44 |
43
|
oveq1d |
|- ( ( ph /\ x e. RR ) -> ( B - x ) = ( ( A + T ) - x ) ) |
45 |
14
|
adantr |
|- ( ( ph /\ x e. RR ) -> A e. CC ) |
46 |
11
|
recnd |
|- ( ( ph /\ x e. RR ) -> T e. CC ) |
47 |
6
|
recnd |
|- ( ( ph /\ x e. RR ) -> x e. CC ) |
48 |
45 46 47
|
addsubd |
|- ( ( ph /\ x e. RR ) -> ( ( A + T ) - x ) = ( ( A - x ) + T ) ) |
49 |
44 48
|
eqtrd |
|- ( ( ph /\ x e. RR ) -> ( B - x ) = ( ( A - x ) + T ) ) |
50 |
49
|
oveq1d |
|- ( ( ph /\ x e. RR ) -> ( ( B - x ) / T ) = ( ( ( A - x ) + T ) / T ) ) |
51 |
45 47
|
subcld |
|- ( ( ph /\ x e. RR ) -> ( A - x ) e. CC ) |
52 |
51 46 46 18
|
divdird |
|- ( ( ph /\ x e. RR ) -> ( ( ( A - x ) + T ) / T ) = ( ( ( A - x ) / T ) + ( T / T ) ) ) |
53 |
4 30
|
eqeltrid |
|- ( ph -> T e. CC ) |
54 |
53 17
|
dividd |
|- ( ph -> ( T / T ) = 1 ) |
55 |
54
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( T / T ) = 1 ) |
56 |
55
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( ( ( A - x ) / T ) + ( T / T ) ) = ( ( ( A - x ) / T ) + 1 ) ) |
57 |
50 52 56
|
3eqtrd |
|- ( ( ph /\ x e. RR ) -> ( ( B - x ) / T ) = ( ( ( A - x ) / T ) + 1 ) ) |
58 |
57
|
fveq2d |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) ) |
59 |
58
|
oveq1d |
|- ( ( ph /\ x e. RR ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) x. T ) ) |
60 |
59 22
|
eqeltrrd |
|- ( ( ph /\ x e. RR ) -> ( ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) x. T ) e. RR ) |
61 |
|
peano2re |
|- ( ( ( A - x ) / T ) e. RR -> ( ( ( A - x ) / T ) + 1 ) e. RR ) |
62 |
26 61
|
syl |
|- ( ( ph /\ x e. RR ) -> ( ( ( A - x ) / T ) + 1 ) e. RR ) |
63 |
|
reflcl |
|- ( ( ( ( A - x ) / T ) + 1 ) e. RR -> ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) e. RR ) |
64 |
62 63
|
syl |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) e. RR ) |
65 |
1 2
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
66 |
3 65
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
67 |
66 12
|
breqtrrd |
|- ( ph -> 0 < T ) |
68 |
10 67
|
elrpd |
|- ( ph -> T e. RR+ ) |
69 |
68
|
adantr |
|- ( ( ph /\ x e. RR ) -> T e. RR+ ) |
70 |
|
flltp1 |
|- ( ( ( A - x ) / T ) e. RR -> ( ( A - x ) / T ) < ( ( |_ ` ( ( A - x ) / T ) ) + 1 ) ) |
71 |
26 70
|
syl |
|- ( ( ph /\ x e. RR ) -> ( ( A - x ) / T ) < ( ( |_ ` ( ( A - x ) / T ) ) + 1 ) ) |
72 |
|
1zzd |
|- ( ( ph /\ x e. RR ) -> 1 e. ZZ ) |
73 |
|
fladdz |
|- ( ( ( ( A - x ) / T ) e. RR /\ 1 e. ZZ ) -> ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) = ( ( |_ ` ( ( A - x ) / T ) ) + 1 ) ) |
74 |
26 72 73
|
syl2anc |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) = ( ( |_ ` ( ( A - x ) / T ) ) + 1 ) ) |
75 |
71 74
|
breqtrrd |
|- ( ( ph /\ x e. RR ) -> ( ( A - x ) / T ) < ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) ) |
76 |
26 64 69 75
|
ltmul1dd |
|- ( ( ph /\ x e. RR ) -> ( ( ( A - x ) / T ) x. T ) < ( ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) x. T ) ) |
77 |
27 60 6 76
|
ltadd2dd |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( ( A - x ) / T ) x. T ) ) < ( x + ( ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) x. T ) ) ) |
78 |
51 46 18
|
divcan1d |
|- ( ( ph /\ x e. RR ) -> ( ( ( A - x ) / T ) x. T ) = ( A - x ) ) |
79 |
78
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( ( A - x ) / T ) x. T ) ) = ( x + ( A - x ) ) ) |
80 |
47 45
|
pncan3d |
|- ( ( ph /\ x e. RR ) -> ( x + ( A - x ) ) = A ) |
81 |
79 80
|
eqtrd |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( ( A - x ) / T ) x. T ) ) = A ) |
82 |
59
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( x + ( ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) x. T ) ) ) |
83 |
82
|
eqcomd |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) x. T ) ) = ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
84 |
77 81 83
|
3brtr3d |
|- ( ( ph /\ x e. RR ) -> A < ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
85 |
19 11
|
remulcld |
|- ( ( ph /\ x e. RR ) -> ( ( ( B - x ) / T ) x. T ) e. RR ) |
86 |
|
flle |
|- ( ( ( B - x ) / T ) e. RR -> ( |_ ` ( ( B - x ) / T ) ) <_ ( ( B - x ) / T ) ) |
87 |
19 86
|
syl |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( B - x ) / T ) ) <_ ( ( B - x ) / T ) ) |
88 |
21 19 69
|
lemul1d |
|- ( ( ph /\ x e. RR ) -> ( ( |_ ` ( ( B - x ) / T ) ) <_ ( ( B - x ) / T ) <-> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) <_ ( ( ( B - x ) / T ) x. T ) ) ) |
89 |
87 88
|
mpbid |
|- ( ( ph /\ x e. RR ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) <_ ( ( ( B - x ) / T ) x. T ) ) |
90 |
22 85 6 89
|
leadd2dd |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) <_ ( x + ( ( ( B - x ) / T ) x. T ) ) ) |
91 |
8
|
recnd |
|- ( ( ph /\ x e. RR ) -> ( B - x ) e. CC ) |
92 |
91 46 18
|
divcan1d |
|- ( ( ph /\ x e. RR ) -> ( ( ( B - x ) / T ) x. T ) = ( B - x ) ) |
93 |
92
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( ( B - x ) / T ) x. T ) ) = ( x + ( B - x ) ) ) |
94 |
13
|
adantr |
|- ( ( ph /\ x e. RR ) -> B e. CC ) |
95 |
47 94
|
pncan3d |
|- ( ( ph /\ x e. RR ) -> ( x + ( B - x ) ) = B ) |
96 |
93 95
|
eqtrd |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( ( B - x ) / T ) x. T ) ) = B ) |
97 |
90 96
|
breqtrd |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) <_ B ) |
98 |
24
|
rexrd |
|- ( ( ph /\ x e. RR ) -> A e. RR* ) |
99 |
|
elioc2 |
|- ( ( A e. RR* /\ B e. RR ) -> ( ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. ( A (,] B ) <-> ( ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. RR /\ A < ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) /\ ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) <_ B ) ) ) |
100 |
98 7 99
|
syl2anc |
|- ( ( ph /\ x e. RR ) -> ( ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. ( A (,] B ) <-> ( ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. RR /\ A < ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) /\ ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) <_ B ) ) ) |
101 |
23 84 97 100
|
mpbir3and |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. ( A (,] B ) ) |
102 |
101 5
|
fmptd |
|- ( ph -> E : RR --> ( A (,] B ) ) |