| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem4.a |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem4.b |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem4.altb |
|- ( ph -> A < B ) |
| 4 |
|
fourierdlem4.t |
|- T = ( B - A ) |
| 5 |
|
fourierdlem4.e |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
| 6 |
|
simpr |
|- ( ( ph /\ x e. RR ) -> x e. RR ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ x e. RR ) -> B e. RR ) |
| 8 |
7 6
|
resubcld |
|- ( ( ph /\ x e. RR ) -> ( B - x ) e. RR ) |
| 9 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 10 |
4 9
|
eqeltrid |
|- ( ph -> T e. RR ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ x e. RR ) -> T e. RR ) |
| 12 |
4
|
a1i |
|- ( ph -> T = ( B - A ) ) |
| 13 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 14 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 15 |
1 3
|
gtned |
|- ( ph -> B =/= A ) |
| 16 |
13 14 15
|
subne0d |
|- ( ph -> ( B - A ) =/= 0 ) |
| 17 |
12 16
|
eqnetrd |
|- ( ph -> T =/= 0 ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ x e. RR ) -> T =/= 0 ) |
| 19 |
8 11 18
|
redivcld |
|- ( ( ph /\ x e. RR ) -> ( ( B - x ) / T ) e. RR ) |
| 20 |
19
|
flcld |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( B - x ) / T ) ) e. ZZ ) |
| 21 |
20
|
zred |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( B - x ) / T ) ) e. RR ) |
| 22 |
21 11
|
remulcld |
|- ( ( ph /\ x e. RR ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) e. RR ) |
| 23 |
6 22
|
readdcld |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. RR ) |
| 24 |
1
|
adantr |
|- ( ( ph /\ x e. RR ) -> A e. RR ) |
| 25 |
24 6
|
resubcld |
|- ( ( ph /\ x e. RR ) -> ( A - x ) e. RR ) |
| 26 |
25 11 18
|
redivcld |
|- ( ( ph /\ x e. RR ) -> ( ( A - x ) / T ) e. RR ) |
| 27 |
26 11
|
remulcld |
|- ( ( ph /\ x e. RR ) -> ( ( ( A - x ) / T ) x. T ) e. RR ) |
| 28 |
13
|
addridd |
|- ( ph -> ( B + 0 ) = B ) |
| 29 |
28
|
eqcomd |
|- ( ph -> B = ( B + 0 ) ) |
| 30 |
13 14
|
subcld |
|- ( ph -> ( B - A ) e. CC ) |
| 31 |
30
|
subidd |
|- ( ph -> ( ( B - A ) - ( B - A ) ) = 0 ) |
| 32 |
31
|
eqcomd |
|- ( ph -> 0 = ( ( B - A ) - ( B - A ) ) ) |
| 33 |
32
|
oveq2d |
|- ( ph -> ( B + 0 ) = ( B + ( ( B - A ) - ( B - A ) ) ) ) |
| 34 |
13 30 30
|
addsub12d |
|- ( ph -> ( B + ( ( B - A ) - ( B - A ) ) ) = ( ( B - A ) + ( B - ( B - A ) ) ) ) |
| 35 |
13 14
|
nncand |
|- ( ph -> ( B - ( B - A ) ) = A ) |
| 36 |
35
|
oveq2d |
|- ( ph -> ( ( B - A ) + ( B - ( B - A ) ) ) = ( ( B - A ) + A ) ) |
| 37 |
30 14
|
addcomd |
|- ( ph -> ( ( B - A ) + A ) = ( A + ( B - A ) ) ) |
| 38 |
12
|
eqcomd |
|- ( ph -> ( B - A ) = T ) |
| 39 |
38
|
oveq2d |
|- ( ph -> ( A + ( B - A ) ) = ( A + T ) ) |
| 40 |
37 39
|
eqtrd |
|- ( ph -> ( ( B - A ) + A ) = ( A + T ) ) |
| 41 |
34 36 40
|
3eqtrd |
|- ( ph -> ( B + ( ( B - A ) - ( B - A ) ) ) = ( A + T ) ) |
| 42 |
29 33 41
|
3eqtrd |
|- ( ph -> B = ( A + T ) ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ x e. RR ) -> B = ( A + T ) ) |
| 44 |
43
|
oveq1d |
|- ( ( ph /\ x e. RR ) -> ( B - x ) = ( ( A + T ) - x ) ) |
| 45 |
14
|
adantr |
|- ( ( ph /\ x e. RR ) -> A e. CC ) |
| 46 |
11
|
recnd |
|- ( ( ph /\ x e. RR ) -> T e. CC ) |
| 47 |
6
|
recnd |
|- ( ( ph /\ x e. RR ) -> x e. CC ) |
| 48 |
45 46 47
|
addsubd |
|- ( ( ph /\ x e. RR ) -> ( ( A + T ) - x ) = ( ( A - x ) + T ) ) |
| 49 |
44 48
|
eqtrd |
|- ( ( ph /\ x e. RR ) -> ( B - x ) = ( ( A - x ) + T ) ) |
| 50 |
49
|
oveq1d |
|- ( ( ph /\ x e. RR ) -> ( ( B - x ) / T ) = ( ( ( A - x ) + T ) / T ) ) |
| 51 |
45 47
|
subcld |
|- ( ( ph /\ x e. RR ) -> ( A - x ) e. CC ) |
| 52 |
51 46 46 18
|
divdird |
|- ( ( ph /\ x e. RR ) -> ( ( ( A - x ) + T ) / T ) = ( ( ( A - x ) / T ) + ( T / T ) ) ) |
| 53 |
4 30
|
eqeltrid |
|- ( ph -> T e. CC ) |
| 54 |
53 17
|
dividd |
|- ( ph -> ( T / T ) = 1 ) |
| 55 |
54
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( T / T ) = 1 ) |
| 56 |
55
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( ( ( A - x ) / T ) + ( T / T ) ) = ( ( ( A - x ) / T ) + 1 ) ) |
| 57 |
50 52 56
|
3eqtrd |
|- ( ( ph /\ x e. RR ) -> ( ( B - x ) / T ) = ( ( ( A - x ) / T ) + 1 ) ) |
| 58 |
57
|
fveq2d |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) ) |
| 59 |
58
|
oveq1d |
|- ( ( ph /\ x e. RR ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) x. T ) ) |
| 60 |
59 22
|
eqeltrrd |
|- ( ( ph /\ x e. RR ) -> ( ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) x. T ) e. RR ) |
| 61 |
|
peano2re |
|- ( ( ( A - x ) / T ) e. RR -> ( ( ( A - x ) / T ) + 1 ) e. RR ) |
| 62 |
26 61
|
syl |
|- ( ( ph /\ x e. RR ) -> ( ( ( A - x ) / T ) + 1 ) e. RR ) |
| 63 |
|
reflcl |
|- ( ( ( ( A - x ) / T ) + 1 ) e. RR -> ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) e. RR ) |
| 64 |
62 63
|
syl |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) e. RR ) |
| 65 |
1 2
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
| 66 |
3 65
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
| 67 |
66 12
|
breqtrrd |
|- ( ph -> 0 < T ) |
| 68 |
10 67
|
elrpd |
|- ( ph -> T e. RR+ ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ x e. RR ) -> T e. RR+ ) |
| 70 |
|
flltp1 |
|- ( ( ( A - x ) / T ) e. RR -> ( ( A - x ) / T ) < ( ( |_ ` ( ( A - x ) / T ) ) + 1 ) ) |
| 71 |
26 70
|
syl |
|- ( ( ph /\ x e. RR ) -> ( ( A - x ) / T ) < ( ( |_ ` ( ( A - x ) / T ) ) + 1 ) ) |
| 72 |
|
1zzd |
|- ( ( ph /\ x e. RR ) -> 1 e. ZZ ) |
| 73 |
|
fladdz |
|- ( ( ( ( A - x ) / T ) e. RR /\ 1 e. ZZ ) -> ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) = ( ( |_ ` ( ( A - x ) / T ) ) + 1 ) ) |
| 74 |
26 72 73
|
syl2anc |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) = ( ( |_ ` ( ( A - x ) / T ) ) + 1 ) ) |
| 75 |
71 74
|
breqtrrd |
|- ( ( ph /\ x e. RR ) -> ( ( A - x ) / T ) < ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) ) |
| 76 |
26 64 69 75
|
ltmul1dd |
|- ( ( ph /\ x e. RR ) -> ( ( ( A - x ) / T ) x. T ) < ( ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) x. T ) ) |
| 77 |
27 60 6 76
|
ltadd2dd |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( ( A - x ) / T ) x. T ) ) < ( x + ( ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) x. T ) ) ) |
| 78 |
51 46 18
|
divcan1d |
|- ( ( ph /\ x e. RR ) -> ( ( ( A - x ) / T ) x. T ) = ( A - x ) ) |
| 79 |
78
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( ( A - x ) / T ) x. T ) ) = ( x + ( A - x ) ) ) |
| 80 |
47 45
|
pncan3d |
|- ( ( ph /\ x e. RR ) -> ( x + ( A - x ) ) = A ) |
| 81 |
79 80
|
eqtrd |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( ( A - x ) / T ) x. T ) ) = A ) |
| 82 |
59
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( x + ( ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) x. T ) ) ) |
| 83 |
82
|
eqcomd |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( |_ ` ( ( ( A - x ) / T ) + 1 ) ) x. T ) ) = ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
| 84 |
77 81 83
|
3brtr3d |
|- ( ( ph /\ x e. RR ) -> A < ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
| 85 |
19 11
|
remulcld |
|- ( ( ph /\ x e. RR ) -> ( ( ( B - x ) / T ) x. T ) e. RR ) |
| 86 |
|
flle |
|- ( ( ( B - x ) / T ) e. RR -> ( |_ ` ( ( B - x ) / T ) ) <_ ( ( B - x ) / T ) ) |
| 87 |
19 86
|
syl |
|- ( ( ph /\ x e. RR ) -> ( |_ ` ( ( B - x ) / T ) ) <_ ( ( B - x ) / T ) ) |
| 88 |
21 19 69
|
lemul1d |
|- ( ( ph /\ x e. RR ) -> ( ( |_ ` ( ( B - x ) / T ) ) <_ ( ( B - x ) / T ) <-> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) <_ ( ( ( B - x ) / T ) x. T ) ) ) |
| 89 |
87 88
|
mpbid |
|- ( ( ph /\ x e. RR ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) <_ ( ( ( B - x ) / T ) x. T ) ) |
| 90 |
22 85 6 89
|
leadd2dd |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) <_ ( x + ( ( ( B - x ) / T ) x. T ) ) ) |
| 91 |
8
|
recnd |
|- ( ( ph /\ x e. RR ) -> ( B - x ) e. CC ) |
| 92 |
91 46 18
|
divcan1d |
|- ( ( ph /\ x e. RR ) -> ( ( ( B - x ) / T ) x. T ) = ( B - x ) ) |
| 93 |
92
|
oveq2d |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( ( B - x ) / T ) x. T ) ) = ( x + ( B - x ) ) ) |
| 94 |
13
|
adantr |
|- ( ( ph /\ x e. RR ) -> B e. CC ) |
| 95 |
47 94
|
pncan3d |
|- ( ( ph /\ x e. RR ) -> ( x + ( B - x ) ) = B ) |
| 96 |
93 95
|
eqtrd |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( ( B - x ) / T ) x. T ) ) = B ) |
| 97 |
90 96
|
breqtrd |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) <_ B ) |
| 98 |
24
|
rexrd |
|- ( ( ph /\ x e. RR ) -> A e. RR* ) |
| 99 |
|
elioc2 |
|- ( ( A e. RR* /\ B e. RR ) -> ( ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. ( A (,] B ) <-> ( ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. RR /\ A < ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) /\ ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) <_ B ) ) ) |
| 100 |
98 7 99
|
syl2anc |
|- ( ( ph /\ x e. RR ) -> ( ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. ( A (,] B ) <-> ( ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. RR /\ A < ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) /\ ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) <_ B ) ) ) |
| 101 |
23 84 97 100
|
mpbir3and |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. ( A (,] B ) ) |
| 102 |
101 5
|
fmptd |
|- ( ph -> E : RR --> ( A (,] B ) ) |