Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem4.a |
|
2 |
|
fourierdlem4.b |
|
3 |
|
fourierdlem4.altb |
|
4 |
|
fourierdlem4.t |
|
5 |
|
fourierdlem4.e |
|
6 |
|
simpr |
|
7 |
2
|
adantr |
|
8 |
7 6
|
resubcld |
|
9 |
2 1
|
resubcld |
|
10 |
4 9
|
eqeltrid |
|
11 |
10
|
adantr |
|
12 |
4
|
a1i |
|
13 |
2
|
recnd |
|
14 |
1
|
recnd |
|
15 |
1 3
|
gtned |
|
16 |
13 14 15
|
subne0d |
|
17 |
12 16
|
eqnetrd |
|
18 |
17
|
adantr |
|
19 |
8 11 18
|
redivcld |
|
20 |
19
|
flcld |
|
21 |
20
|
zred |
|
22 |
21 11
|
remulcld |
|
23 |
6 22
|
readdcld |
|
24 |
1
|
adantr |
|
25 |
24 6
|
resubcld |
|
26 |
25 11 18
|
redivcld |
|
27 |
26 11
|
remulcld |
|
28 |
13
|
addid1d |
|
29 |
28
|
eqcomd |
|
30 |
13 14
|
subcld |
|
31 |
30
|
subidd |
|
32 |
31
|
eqcomd |
|
33 |
32
|
oveq2d |
|
34 |
13 30 30
|
addsub12d |
|
35 |
13 14
|
nncand |
|
36 |
35
|
oveq2d |
|
37 |
30 14
|
addcomd |
|
38 |
12
|
eqcomd |
|
39 |
38
|
oveq2d |
|
40 |
37 39
|
eqtrd |
|
41 |
34 36 40
|
3eqtrd |
|
42 |
29 33 41
|
3eqtrd |
|
43 |
42
|
adantr |
|
44 |
43
|
oveq1d |
|
45 |
14
|
adantr |
|
46 |
11
|
recnd |
|
47 |
6
|
recnd |
|
48 |
45 46 47
|
addsubd |
|
49 |
44 48
|
eqtrd |
|
50 |
49
|
oveq1d |
|
51 |
45 47
|
subcld |
|
52 |
51 46 46 18
|
divdird |
|
53 |
4 30
|
eqeltrid |
|
54 |
53 17
|
dividd |
|
55 |
54
|
adantr |
|
56 |
55
|
oveq2d |
|
57 |
50 52 56
|
3eqtrd |
|
58 |
57
|
fveq2d |
|
59 |
58
|
oveq1d |
|
60 |
59 22
|
eqeltrrd |
|
61 |
|
peano2re |
|
62 |
26 61
|
syl |
|
63 |
|
reflcl |
|
64 |
62 63
|
syl |
|
65 |
1 2
|
posdifd |
|
66 |
3 65
|
mpbid |
|
67 |
66 12
|
breqtrrd |
|
68 |
10 67
|
elrpd |
|
69 |
68
|
adantr |
|
70 |
|
flltp1 |
|
71 |
26 70
|
syl |
|
72 |
|
1zzd |
|
73 |
|
fladdz |
|
74 |
26 72 73
|
syl2anc |
|
75 |
71 74
|
breqtrrd |
|
76 |
26 64 69 75
|
ltmul1dd |
|
77 |
27 60 6 76
|
ltadd2dd |
|
78 |
51 46 18
|
divcan1d |
|
79 |
78
|
oveq2d |
|
80 |
47 45
|
pncan3d |
|
81 |
79 80
|
eqtrd |
|
82 |
59
|
oveq2d |
|
83 |
82
|
eqcomd |
|
84 |
77 81 83
|
3brtr3d |
|
85 |
19 11
|
remulcld |
|
86 |
|
flle |
|
87 |
19 86
|
syl |
|
88 |
21 19 69
|
lemul1d |
|
89 |
87 88
|
mpbid |
|
90 |
22 85 6 89
|
leadd2dd |
|
91 |
8
|
recnd |
|
92 |
91 46 18
|
divcan1d |
|
93 |
92
|
oveq2d |
|
94 |
13
|
adantr |
|
95 |
47 94
|
pncan3d |
|
96 |
93 95
|
eqtrd |
|
97 |
90 96
|
breqtrd |
|
98 |
24
|
rexrd |
|
99 |
|
elioc2 |
|
100 |
98 7 99
|
syl2anc |
|
101 |
23 84 97 100
|
mpbir3and |
|
102 |
101 5
|
fmptd |
|