Metamath Proof Explorer


Theorem fourierdlem19

Description: If two elements of D have the same periodic image in ( A (,] B ) then they are equal. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem19.a φA
fourierdlem19.b φB
fourierdlem19.altb φA<B
fourierdlem19.x φX
fourierdlem19.d D=yA+XB+X|ky+kTC
fourierdlem19.t T=BA
fourierdlem19.e E=xx+BxTT
fourierdlem19.w φWD
fourierdlem19.z φZD
fourierdlem19.ezew φEZ=EW
Assertion fourierdlem19 φ¬W<Z

Proof

Step Hyp Ref Expression
1 fourierdlem19.a φA
2 fourierdlem19.b φB
3 fourierdlem19.altb φA<B
4 fourierdlem19.x φX
5 fourierdlem19.d D=yA+XB+X|ky+kTC
6 fourierdlem19.t T=BA
7 fourierdlem19.e E=xx+BxTT
8 fourierdlem19.w φWD
9 fourierdlem19.z φZD
10 fourierdlem19.ezew φEZ=EW
11 1 4 readdcld φA+X
12 11 rexrd φA+X*
13 2 4 readdcld φB+X
14 13 rexrd φB+X*
15 ssrab2 yA+XB+X|ky+kTCA+XB+X
16 5 15 eqsstri DA+XB+X
17 16 9 sselid φZA+XB+X
18 iocleub A+X*B+X*ZA+XB+XZB+X
19 12 14 17 18 syl3anc φZB+X
20 19 adantr φW<ZZB+X
21 13 adantr φW<ZB+X
22 iocssre A+X*B+XA+XB+X
23 12 13 22 syl2anc φA+XB+X
24 16 8 sselid φWA+XB+X
25 23 24 sseldd φW
26 2 1 resubcld φBA
27 6 26 eqeltrid φT
28 25 27 readdcld φW+T
29 28 adantr φW<ZW+T
30 23 17 sseldd φZ
31 30 adantr φW<ZZ
32 6 eqcomi BA=T
33 32 a1i φBA=T
34 2 recnd φB
35 1 recnd φA
36 27 recnd φT
37 34 35 36 subaddd φBA=TA+T=B
38 33 37 mpbid φA+T=B
39 38 eqcomd φB=A+T
40 39 oveq1d φB+X=A+T+X
41 4 recnd φX
42 35 36 41 add32d φA+T+X=A+X+T
43 40 42 eqtrd φB+X=A+X+T
44 iocgtlb A+X*B+X*WA+XB+XA+X<W
45 12 14 24 44 syl3anc φA+X<W
46 11 25 27 45 ltadd1dd φA+X+T<W+T
47 43 46 eqbrtrd φB+X<W+T
48 47 adantr φW<ZB+X<W+T
49 7 a1i φE=xx+BxTT
50 id x=Wx=W
51 oveq2 x=WBx=BW
52 51 oveq1d x=WBxT=BWT
53 52 fveq2d x=WBxT=BWT
54 53 oveq1d x=WBxTT=BWTT
55 50 54 oveq12d x=Wx+BxTT=W+BWTT
56 55 adantl φx=Wx+BxTT=W+BWTT
57 2 25 resubcld φBW
58 1 2 posdifd φA<B0<BA
59 3 58 mpbid φ0<BA
60 59 6 breqtrrdi φ0<T
61 60 gt0ne0d φT0
62 57 27 61 redivcld φBWT
63 62 flcld φBWT
64 63 zred φBWT
65 64 27 remulcld φBWTT
66 25 65 readdcld φW+BWTT
67 49 56 25 66 fvmptd φEW=W+BWTT
68 67 66 eqeltrd φEW
69 68 recnd φEW
70 69 adantr φW<ZEW
71 65 recnd φBWTT
72 71 adantr φW<ZBWTT
73 36 adantr φW<ZT
74 70 72 73 subsubd φW<ZEWBWTTT=EW-BWTT+T
75 74 eqcomd φW<ZEW-BWTT+T=EWBWTTT
76 2 30 resubcld φBZ
77 76 27 61 redivcld φBZT
78 77 flcld φBZT
79 78 zred φBZT
80 79 adantr φW<ZBZT
81 27 adantr φW<ZT
82 80 81 remulcld φW<ZBZTT
83 64 adantr φW<ZBWT
84 83 81 remulcld φW<ZBWTT
85 84 81 resubcld φW<ZBWTTT
86 68 adantr φW<ZEW
87 79 27 remulcld φBZTT
88 87 recnd φBZTT
89 88 36 pncand φBZTT+T-T=BZTT
90 89 eqcomd φBZTT=BZTT+T-T
91 90 adantr φW<ZBZTT=BZTT+T-T
92 82 81 readdcld φW<ZBZTT+T
93 79 recnd φBZT
94 93 36 adddirp1d φBZT+1T=BZTT+T
95 94 eqcomd φBZTT+T=BZT+1T
96 95 adantr φW<ZBZTT+T=BZT+1T
97 1red φW<Z1
98 80 97 readdcld φW<ZBZT+1
99 0red φ0
100 99 27 60 ltled φ0T
101 100 adantr φW<Z0T
102 86 31 resubcld φW<ZEWZ
103 25 adantr φW<ZW
104 86 103 resubcld φW<ZEWW
105 27 60 elrpd φT+
106 105 adantr φW<ZT+
107 simpr φW<ZW<Z
108 103 31 86 107 ltsub2dd φW<ZEWZ<EWW
109 102 104 106 108 ltdiv1dd φW<ZEWZT<EWWT
110 id x=Zx=Z
111 oveq2 x=ZBx=BZ
112 111 oveq1d x=ZBxT=BZT
113 112 fveq2d x=ZBxT=BZT
114 113 oveq1d x=ZBxTT=BZTT
115 110 114 oveq12d x=Zx+BxTT=Z+BZTT
116 115 adantl φx=Zx+BxTT=Z+BZTT
117 30 87 readdcld φZ+BZTT
118 49 116 30 117 fvmptd φEZ=Z+BZTT
119 10 118 eqtr3d φEW=Z+BZTT
120 119 oveq1d φEWZ=Z+BZTT-Z
121 30 recnd φZ
122 121 88 pncan2d φZ+BZTT-Z=BZTT
123 120 122 eqtrd φEWZ=BZTT
124 123 oveq1d φEWZT=BZTTT
125 93 36 61 divcan4d φBZTTT=BZT
126 124 125 eqtr2d φBZT=EWZT
127 126 adantr φW<ZBZT=EWZT
128 67 oveq1d φEWW=W+BWTT-W
129 128 oveq1d φEWWT=W+BWTT-WT
130 25 recnd φW
131 130 71 pncan2d φW+BWTT-W=BWTT
132 131 oveq1d φW+BWTT-WT=BWTTT
133 64 recnd φBWT
134 133 36 61 divcan4d φBWTTT=BWT
135 129 132 134 3eqtrrd φBWT=EWWT
136 135 adantr φW<ZBWT=EWWT
137 109 127 136 3brtr4d φW<ZBZT<BWT
138 78 adantr φW<ZBZT
139 63 adantr φW<ZBWT
140 zltp1le BZTBWTBZT<BWTBZT+1BWT
141 138 139 140 syl2anc φW<ZBZT<BWTBZT+1BWT
142 137 141 mpbid φW<ZBZT+1BWT
143 98 83 81 101 142 lemul1ad φW<ZBZT+1TBWTT
144 96 143 eqbrtrd φW<ZBZTT+TBWTT
145 92 84 81 144 lesub1dd φW<ZBZTT+T-TBWTTT
146 91 145 eqbrtrd φW<ZBZTTBWTTT
147 82 85 86 146 lesub2dd φW<ZEWBWTTTEWBZTT
148 75 147 eqbrtrd φW<ZEW-BWTT+TEWBZTT
149 67 eqcomd φW+BWTT=EW
150 69 71 130 subadd2d φEWBWTT=WW+BWTT=EW
151 149 150 mpbird φEWBWTT=W
152 151 eqcomd φW=EWBWTT
153 152 oveq1d φW+T=EW-BWTT+T
154 153 adantr φW<ZW+T=EW-BWTT+T
155 118 eqcomd φZ+BZTT=EZ
156 1 rexrd φA*
157 iocssre A*BAB
158 156 2 157 syl2anc φAB
159 1 2 3 6 7 fourierdlem4 φE:AB
160 159 30 ffvelcdmd φEZAB
161 158 160 sseldd φEZ
162 161 recnd φEZ
163 162 88 121 subadd2d φEZBZTT=ZZ+BZTT=EZ
164 155 163 mpbird φEZBZTT=Z
165 10 oveq1d φEZBZTT=EWBZTT
166 164 165 eqtr3d φZ=EWBZTT
167 166 adantr φW<ZZ=EWBZTT
168 148 154 167 3brtr4d φW<ZW+TZ
169 21 29 31 48 168 ltletrd φW<ZB+X<Z
170 21 31 ltnled φW<ZB+X<Z¬ZB+X
171 169 170 mpbid φW<Z¬ZB+X
172 20 171 pm2.65da φ¬W<Z