| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem69.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 2 |  | fourierdlem69.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 3 |  | fourierdlem69.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 4 |  | fourierdlem69.f | ⊢ ( 𝜑  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 5 |  | fourierdlem69.fcn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 6 |  | fourierdlem69.r | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 7 |  | fourierdlem69.l | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 8 | 1 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 10 | 3 9 | mpbid | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 11 | 10 | simprd | ⊢ ( 𝜑  →  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 12 | 11 | simpld | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) ) | 
						
							| 13 | 12 | simpld | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  𝐴 ) | 
						
							| 14 | 12 | simprd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) | 
						
							| 15 | 13 14 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) )  =  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 16 | 15 | feq2d | ⊢ ( 𝜑  →  ( 𝐹 : ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ⟶ ℂ  ↔  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ) | 
						
							| 17 | 4 16 | mpbird | ⊢ ( 𝜑  →  𝐹 : ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ⟶ ℂ ) | 
						
							| 18 | 17 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 19 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 20 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 21 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 22 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 23 | 22 | fveq2i | ⊢ ( ℤ≥ ‘ 1 )  =  ( ℤ≥ ‘ ( 0  +  1 ) ) | 
						
							| 24 | 21 23 | eqtri | ⊢ ℕ  =  ( ℤ≥ ‘ ( 0  +  1 ) ) | 
						
							| 25 | 2 24 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) ) | 
						
							| 26 | 10 | simpld | ⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 27 |  | elmapi | ⊢ ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 29 | 28 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 30 | 11 | simprd | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 31 | 30 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 32 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) )  →  𝑥  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) | 
						
							| 34 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) )  →  ( 𝑄 ‘ 0 )  =  𝐴 ) | 
						
							| 35 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) )  →  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) | 
						
							| 36 | 34 35 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) )  →  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) )  =  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 37 | 33 36 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 38 | 32 37 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 39 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 40 |  | elfzofz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 42 | 39 41 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 43 |  | fzofzp1 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 45 | 39 44 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 46 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 47 |  | ioossicc | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 48 | 1 2 3 | fourierdlem11 | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 ) ) | 
						
							| 49 | 48 | simp1d | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 50 | 49 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 52 | 48 | simp2d | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 53 | 52 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 55 | 1 2 3 | fourierdlem15 | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) | 
						
							| 57 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 58 | 51 54 56 57 | fourierdlem8 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 59 | 47 58 | sstrid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 60 | 46 59 | feqresmpt | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 61 | 60 5 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 62 | 60 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 63 | 7 62 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 64 | 60 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  =  ( ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 65 | 6 64 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 66 | 42 45 61 63 65 | iblcncfioo | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 67 | 46 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 68 | 58 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 69 | 67 68 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 70 | 42 45 66 69 | ibliooicc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 71 | 19 20 25 29 31 38 70 | iblspltprt | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 72 | 18 71 | eqeltrd | ⊢ ( 𝜑  →  𝐹  ∈  𝐿1 ) |