Metamath Proof Explorer


Theorem fourierdlem69

Description: A piecewise continuous function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem69.p 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
fourierdlem69.m ( 𝜑𝑀 ∈ ℕ )
fourierdlem69.q ( 𝜑𝑄 ∈ ( 𝑃𝑀 ) )
fourierdlem69.f ( 𝜑𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )
fourierdlem69.fcn ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) )
fourierdlem69.r ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄𝑖 ) ) )
fourierdlem69.l ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
Assertion fourierdlem69 ( 𝜑𝐹 ∈ 𝐿1 )

Proof

Step Hyp Ref Expression
1 fourierdlem69.p 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
2 fourierdlem69.m ( 𝜑𝑀 ∈ ℕ )
3 fourierdlem69.q ( 𝜑𝑄 ∈ ( 𝑃𝑀 ) )
4 fourierdlem69.f ( 𝜑𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )
5 fourierdlem69.fcn ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) )
6 fourierdlem69.r ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄𝑖 ) ) )
7 fourierdlem69.l ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
8 1 fourierdlem2 ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) )
9 2 8 syl ( 𝜑 → ( 𝑄 ∈ ( 𝑃𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) )
10 3 9 mpbid ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) )
11 10 simprd ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
12 11 simpld ( 𝜑 → ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) )
13 12 simpld ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 )
14 12 simprd ( 𝜑 → ( 𝑄𝑀 ) = 𝐵 )
15 13 14 oveq12d ( 𝜑 → ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) = ( 𝐴 [,] 𝐵 ) )
16 15 feq2d ( 𝜑 → ( 𝐹 : ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) ⟶ ℂ ↔ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) )
17 4 16 mpbird ( 𝜑𝐹 : ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) ⟶ ℂ )
18 17 feqmptd ( 𝜑𝐹 = ( 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) ↦ ( 𝐹𝑥 ) ) )
19 nfv 𝑥 𝜑
20 0zd ( 𝜑 → 0 ∈ ℤ )
21 nnuz ℕ = ( ℤ ‘ 1 )
22 1e0p1 1 = ( 0 + 1 )
23 22 fveq2i ( ℤ ‘ 1 ) = ( ℤ ‘ ( 0 + 1 ) )
24 21 23 eqtri ℕ = ( ℤ ‘ ( 0 + 1 ) )
25 2 24 eleqtrdi ( 𝜑𝑀 ∈ ( ℤ ‘ ( 0 + 1 ) ) )
26 10 simpld ( 𝜑𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) )
27 elmapi ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
28 26 27 syl ( 𝜑𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
29 28 ffvelrnda ( ( 𝜑𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄𝑖 ) ∈ ℝ )
30 11 simprd ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) )
31 30 r19.21bi ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) )
32 4 adantr ( ( 𝜑𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )
33 simpr ( ( 𝜑𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) )
34 13 adantr ( ( 𝜑𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) ) → ( 𝑄 ‘ 0 ) = 𝐴 )
35 14 adantr ( ( 𝜑𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) ) → ( 𝑄𝑀 ) = 𝐵 )
36 34 35 oveq12d ( ( 𝜑𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) ) → ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) = ( 𝐴 [,] 𝐵 ) )
37 33 36 eleqtrd ( ( 𝜑𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
38 32 37 ffvelrnd ( ( 𝜑𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) ) → ( 𝐹𝑥 ) ∈ ℂ )
39 28 adantr ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
40 elfzofz ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) )
41 40 adantl ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) )
42 39 41 ffvelrnd ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑖 ) ∈ ℝ )
43 fzofzp1 ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) )
44 43 adantl ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) )
45 39 44 ffvelrnd ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ )
46 4 adantr ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )
47 ioossicc ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) )
48 1 2 3 fourierdlem11 ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) )
49 48 simp1d ( 𝜑𝐴 ∈ ℝ )
50 49 rexrd ( 𝜑𝐴 ∈ ℝ* )
51 50 adantr ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ∈ ℝ* )
52 48 simp2d ( 𝜑𝐵 ∈ ℝ )
53 52 rexrd ( 𝜑𝐵 ∈ ℝ* )
54 53 adantr ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐵 ∈ ℝ* )
55 1 2 3 fourierdlem15 ( 𝜑𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) )
56 55 adantr ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) )
57 simpr ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) )
58 51 54 56 57 fourierdlem8 ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) )
59 47 58 sstrid ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) )
60 46 59 feqresmpt ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹𝑥 ) ) )
61 60 5 eqeltrrd ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹𝑥 ) ) ∈ ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) )
62 60 oveq1d ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹𝑥 ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
63 7 62 eleqtrd ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹𝑥 ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
64 60 oveq1d ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄𝑖 ) ) = ( ( 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹𝑥 ) ) lim ( 𝑄𝑖 ) ) )
65 6 64 eleqtrd ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹𝑥 ) ) lim ( 𝑄𝑖 ) ) )
66 42 45 61 63 65 iblcncfioo ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹𝑥 ) ) ∈ 𝐿1 )
67 46 adantr ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )
68 58 sselda ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
69 67 68 ffvelrnd ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹𝑥 ) ∈ ℂ )
70 42 45 66 69 ibliooicc ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑄𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹𝑥 ) ) ∈ 𝐿1 )
71 19 20 25 29 31 38 70 iblspltprt ( 𝜑 → ( 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) ↦ ( 𝐹𝑥 ) ) ∈ 𝐿1 )
72 18 71 eqeltrd ( 𝜑𝐹 ∈ 𝐿1 )