| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem69.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 2 |
|
fourierdlem69.m |
|- ( ph -> M e. NN ) |
| 3 |
|
fourierdlem69.q |
|- ( ph -> Q e. ( P ` M ) ) |
| 4 |
|
fourierdlem69.f |
|- ( ph -> F : ( A [,] B ) --> CC ) |
| 5 |
|
fourierdlem69.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 6 |
|
fourierdlem69.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 7 |
|
fourierdlem69.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 8 |
1
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 9 |
2 8
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 10 |
3 9
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
| 11 |
10
|
simprd |
|- ( ph -> ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
| 12 |
11
|
simpld |
|- ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) ) |
| 13 |
12
|
simpld |
|- ( ph -> ( Q ` 0 ) = A ) |
| 14 |
12
|
simprd |
|- ( ph -> ( Q ` M ) = B ) |
| 15 |
13 14
|
oveq12d |
|- ( ph -> ( ( Q ` 0 ) [,] ( Q ` M ) ) = ( A [,] B ) ) |
| 16 |
15
|
feq2d |
|- ( ph -> ( F : ( ( Q ` 0 ) [,] ( Q ` M ) ) --> CC <-> F : ( A [,] B ) --> CC ) ) |
| 17 |
4 16
|
mpbird |
|- ( ph -> F : ( ( Q ` 0 ) [,] ( Q ` M ) ) --> CC ) |
| 18 |
17
|
feqmptd |
|- ( ph -> F = ( x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) |-> ( F ` x ) ) ) |
| 19 |
|
nfv |
|- F/ x ph |
| 20 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 21 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 22 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 23 |
22
|
fveq2i |
|- ( ZZ>= ` 1 ) = ( ZZ>= ` ( 0 + 1 ) ) |
| 24 |
21 23
|
eqtri |
|- NN = ( ZZ>= ` ( 0 + 1 ) ) |
| 25 |
2 24
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 26 |
10
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
| 27 |
|
elmapi |
|- ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 28 |
26 27
|
syl |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 29 |
28
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) |
| 30 |
11
|
simprd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 31 |
30
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 32 |
4
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> F : ( A [,] B ) --> CC ) |
| 33 |
|
simpr |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
| 34 |
13
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( Q ` 0 ) = A ) |
| 35 |
14
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( Q ` M ) = B ) |
| 36 |
34 35
|
oveq12d |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( ( Q ` 0 ) [,] ( Q ` M ) ) = ( A [,] B ) ) |
| 37 |
33 36
|
eleqtrd |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> x e. ( A [,] B ) ) |
| 38 |
32 37
|
ffvelcdmd |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( F ` x ) e. CC ) |
| 39 |
28
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 40 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
| 41 |
40
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
| 42 |
39 41
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
| 43 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 44 |
43
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 45 |
39 44
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 46 |
4
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : ( A [,] B ) --> CC ) |
| 47 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
| 48 |
1 2 3
|
fourierdlem11 |
|- ( ph -> ( A e. RR /\ B e. RR /\ A < B ) ) |
| 49 |
48
|
simp1d |
|- ( ph -> A e. RR ) |
| 50 |
49
|
rexrd |
|- ( ph -> A e. RR* ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR* ) |
| 52 |
48
|
simp2d |
|- ( ph -> B e. RR ) |
| 53 |
52
|
rexrd |
|- ( ph -> B e. RR* ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> B e. RR* ) |
| 55 |
1 2 3
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 57 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
| 58 |
51 54 56 57
|
fourierdlem8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
| 59 |
47 58
|
sstrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
| 60 |
46 59
|
feqresmpt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) |
| 61 |
60 5
|
eqeltrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 62 |
60
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 63 |
7 62
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 64 |
60
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` i ) ) ) |
| 65 |
6 64
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` i ) ) ) |
| 66 |
42 45 61 63 65
|
iblcncfioo |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. L^1 ) |
| 67 |
46
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> F : ( A [,] B ) --> CC ) |
| 68 |
58
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. ( A [,] B ) ) |
| 69 |
67 68
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
| 70 |
42 45 66 69
|
ibliooicc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. L^1 ) |
| 71 |
19 20 25 29 31 38 70
|
iblspltprt |
|- ( ph -> ( x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) |-> ( F ` x ) ) e. L^1 ) |
| 72 |
18 71
|
eqeltrd |
|- ( ph -> F e. L^1 ) |