| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iblcncfioo.a |
|- ( ph -> A e. RR ) |
| 2 |
|
iblcncfioo.b |
|- ( ph -> B e. RR ) |
| 3 |
|
iblcncfioo.f |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 4 |
|
iblcncfioo.l |
|- ( ph -> L e. ( F limCC B ) ) |
| 5 |
|
iblcncfioo.r |
|- ( ph -> R e. ( F limCC A ) ) |
| 6 |
|
cncff |
|- ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC ) |
| 7 |
3 6
|
syl |
|- ( ph -> F : ( A (,) B ) --> CC ) |
| 8 |
7
|
feqmptd |
|- ( ph -> F = ( x e. ( A (,) B ) |-> ( F ` x ) ) ) |
| 9 |
1
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR ) |
| 10 |
|
eliooord |
|- ( x e. ( A (,) B ) -> ( A < x /\ x < B ) ) |
| 11 |
10
|
simpld |
|- ( x e. ( A (,) B ) -> A < x ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A < x ) |
| 13 |
9 12
|
gtned |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= A ) |
| 14 |
13
|
neneqd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = A ) |
| 15 |
14
|
iffalsed |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
| 16 |
|
elioore |
|- ( x e. ( A (,) B ) -> x e. RR ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. RR ) |
| 18 |
10
|
simprd |
|- ( x e. ( A (,) B ) -> x < B ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x < B ) |
| 20 |
17 19
|
ltned |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= B ) |
| 21 |
20
|
neneqd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = B ) |
| 22 |
21
|
iffalsed |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
| 23 |
15 22
|
eqtrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
| 24 |
23
|
eqcomd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 25 |
24
|
mpteq2dva |
|- ( ph -> ( x e. ( A (,) B ) |-> ( F ` x ) ) = ( x e. ( A (,) B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) ) |
| 26 |
8 25
|
eqtrd |
|- ( ph -> F = ( x e. ( A (,) B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) ) |
| 27 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 28 |
27
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
| 29 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
| 30 |
29
|
a1i |
|- ( ph -> ( A (,) B ) e. dom vol ) |
| 31 |
|
iftrue |
|- ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
| 32 |
31
|
adantl |
|- ( ( ph /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
| 33 |
|
limccl |
|- ( F limCC A ) C_ CC |
| 34 |
33 5
|
sselid |
|- ( ph -> R e. CC ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ x = A ) -> R e. CC ) |
| 36 |
32 35
|
eqeltrd |
|- ( ( ph /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 37 |
36
|
adantlr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 38 |
|
iffalse |
|- ( -. x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
| 39 |
38
|
ad2antlr |
|- ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
| 40 |
|
iftrue |
|- ( x = B -> if ( x = B , L , ( F ` x ) ) = L ) |
| 41 |
40
|
adantl |
|- ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = B , L , ( F ` x ) ) = L ) |
| 42 |
39 41
|
eqtrd |
|- ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L ) |
| 43 |
|
limccl |
|- ( F limCC B ) C_ CC |
| 44 |
43 4
|
sselid |
|- ( ph -> L e. CC ) |
| 45 |
44
|
ad2antrr |
|- ( ( ( ph /\ -. x = A ) /\ x = B ) -> L e. CC ) |
| 46 |
42 45
|
eqeltrd |
|- ( ( ( ph /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 47 |
46
|
adantllr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 48 |
|
simplll |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ph ) |
| 49 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 50 |
48 49
|
syl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A e. RR* ) |
| 51 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 52 |
48 51
|
syl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> B e. RR* ) |
| 53 |
|
eliccxr |
|- ( x e. ( A [,] B ) -> x e. RR* ) |
| 54 |
53
|
ad3antlr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. RR* ) |
| 55 |
50 52 54
|
3jca |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( A e. RR* /\ B e. RR* /\ x e. RR* ) ) |
| 56 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A e. RR ) |
| 57 |
1
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR ) |
| 58 |
2
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
| 59 |
|
simpr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
| 60 |
|
eliccre |
|- ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> x e. RR ) |
| 61 |
57 58 59 60
|
syl3anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) |
| 62 |
61
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x e. RR ) |
| 63 |
1 2
|
jca |
|- ( ph -> ( A e. RR /\ B e. RR ) ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( A e. RR /\ B e. RR ) ) |
| 65 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 66 |
64 65
|
syl |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 67 |
59 66
|
mpbid |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
| 68 |
67
|
simp2d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A <_ x ) |
| 69 |
68
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A <_ x ) |
| 70 |
|
df-ne |
|- ( x =/= A <-> -. x = A ) |
| 71 |
70
|
biimpri |
|- ( -. x = A -> x =/= A ) |
| 72 |
71
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x =/= A ) |
| 73 |
56 62 69 72
|
leneltd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A < x ) |
| 74 |
73
|
adantr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A < x ) |
| 75 |
|
nesym |
|- ( B =/= x <-> -. x = B ) |
| 76 |
75
|
biimpri |
|- ( -. x = B -> B =/= x ) |
| 77 |
76
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B =/= x ) |
| 78 |
67
|
simp3d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
| 79 |
61 58 78
|
3jca |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ B e. RR /\ x <_ B ) ) |
| 80 |
79
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> ( x e. RR /\ B e. RR /\ x <_ B ) ) |
| 81 |
|
leltne |
|- ( ( x e. RR /\ B e. RR /\ x <_ B ) -> ( x < B <-> B =/= x ) ) |
| 82 |
80 81
|
syl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> ( x < B <-> B =/= x ) ) |
| 83 |
77 82
|
mpbird |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x < B ) |
| 84 |
83
|
adantlr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x < B ) |
| 85 |
74 84
|
jca |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( A < x /\ x < B ) ) |
| 86 |
|
elioo3g |
|- ( x e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ x e. RR* ) /\ ( A < x /\ x < B ) ) ) |
| 87 |
55 85 86
|
sylanbrc |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A (,) B ) ) |
| 88 |
48 87
|
jca |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( ph /\ x e. ( A (,) B ) ) ) |
| 89 |
7
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. CC ) |
| 90 |
23 89
|
eqeltrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 91 |
88 90
|
syl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 92 |
47 91
|
pm2.61dan |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 93 |
37 92
|
pm2.61dan |
|- ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 94 |
|
nfv |
|- F/ x ph |
| 95 |
|
eqid |
|- ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 96 |
94 95 1 2 3 4 5
|
cncfiooicc |
|- ( ph -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 97 |
|
cniccibl |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) e. L^1 ) |
| 98 |
1 2 96 97
|
syl3anc |
|- ( ph -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) e. L^1 ) |
| 99 |
28 30 93 98
|
iblss |
|- ( ph -> ( x e. ( A (,) B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) e. L^1 ) |
| 100 |
26 99
|
eqeltrd |
|- ( ph -> F e. L^1 ) |