| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncfiooicc.x |
|- F/ x ph |
| 2 |
|
cncfiooicc.g |
|- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 3 |
|
cncfiooicc.a |
|- ( ph -> A e. RR ) |
| 4 |
|
cncfiooicc.b |
|- ( ph -> B e. RR ) |
| 5 |
|
cncfiooicc.f |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 6 |
|
cncfiooicc.l |
|- ( ph -> L e. ( F limCC B ) ) |
| 7 |
|
cncfiooicc.r |
|- ( ph -> R e. ( F limCC A ) ) |
| 8 |
|
nfv |
|- F/ x ( ph /\ A < B ) |
| 9 |
3
|
adantr |
|- ( ( ph /\ A < B ) -> A e. RR ) |
| 10 |
4
|
adantr |
|- ( ( ph /\ A < B ) -> B e. RR ) |
| 11 |
|
simpr |
|- ( ( ph /\ A < B ) -> A < B ) |
| 12 |
5
|
adantr |
|- ( ( ph /\ A < B ) -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 13 |
6
|
adantr |
|- ( ( ph /\ A < B ) -> L e. ( F limCC B ) ) |
| 14 |
7
|
adantr |
|- ( ( ph /\ A < B ) -> R e. ( F limCC A ) ) |
| 15 |
8 2 9 10 11 12 13 14
|
cncfiooicclem1 |
|- ( ( ph /\ A < B ) -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 16 |
|
limccl |
|- ( F limCC A ) C_ CC |
| 17 |
16 7
|
sselid |
|- ( ph -> R e. CC ) |
| 18 |
17
|
snssd |
|- ( ph -> { R } C_ CC ) |
| 19 |
|
ssid |
|- CC C_ CC |
| 20 |
19
|
a1i |
|- ( ph -> CC C_ CC ) |
| 21 |
|
cncfss |
|- ( ( { R } C_ CC /\ CC C_ CC ) -> ( { A } -cn-> { R } ) C_ ( { A } -cn-> CC ) ) |
| 22 |
18 20 21
|
syl2anc |
|- ( ph -> ( { A } -cn-> { R } ) C_ ( { A } -cn-> CC ) ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ A = B ) -> ( { A } -cn-> { R } ) C_ ( { A } -cn-> CC ) ) |
| 24 |
3
|
rexrd |
|- ( ph -> A e. RR* ) |
| 25 |
|
iccid |
|- ( A e. RR* -> ( A [,] A ) = { A } ) |
| 26 |
24 25
|
syl |
|- ( ph -> ( A [,] A ) = { A } ) |
| 27 |
|
oveq2 |
|- ( A = B -> ( A [,] A ) = ( A [,] B ) ) |
| 28 |
26 27
|
sylan9req |
|- ( ( ph /\ A = B ) -> { A } = ( A [,] B ) ) |
| 29 |
28
|
eqcomd |
|- ( ( ph /\ A = B ) -> ( A [,] B ) = { A } ) |
| 30 |
|
simpr |
|- ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
| 31 |
29
|
adantr |
|- ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> ( A [,] B ) = { A } ) |
| 32 |
30 31
|
eleqtrd |
|- ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> x e. { A } ) |
| 33 |
|
elsni |
|- ( x e. { A } -> x = A ) |
| 34 |
32 33
|
syl |
|- ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> x = A ) |
| 35 |
34
|
iftrued |
|- ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
| 36 |
29 35
|
mpteq12dva |
|- ( ( ph /\ A = B ) -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = ( x e. { A } |-> R ) ) |
| 37 |
2 36
|
eqtrid |
|- ( ( ph /\ A = B ) -> G = ( x e. { A } |-> R ) ) |
| 38 |
3
|
recnd |
|- ( ph -> A e. CC ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ A = B ) -> A e. CC ) |
| 40 |
17
|
adantr |
|- ( ( ph /\ A = B ) -> R e. CC ) |
| 41 |
|
cncfdmsn |
|- ( ( A e. CC /\ R e. CC ) -> ( x e. { A } |-> R ) e. ( { A } -cn-> { R } ) ) |
| 42 |
39 40 41
|
syl2anc |
|- ( ( ph /\ A = B ) -> ( x e. { A } |-> R ) e. ( { A } -cn-> { R } ) ) |
| 43 |
37 42
|
eqeltrd |
|- ( ( ph /\ A = B ) -> G e. ( { A } -cn-> { R } ) ) |
| 44 |
23 43
|
sseldd |
|- ( ( ph /\ A = B ) -> G e. ( { A } -cn-> CC ) ) |
| 45 |
28
|
oveq1d |
|- ( ( ph /\ A = B ) -> ( { A } -cn-> CC ) = ( ( A [,] B ) -cn-> CC ) ) |
| 46 |
44 45
|
eleqtrd |
|- ( ( ph /\ A = B ) -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 47 |
46
|
adantlr |
|- ( ( ( ph /\ -. A < B ) /\ A = B ) -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 48 |
|
simpll |
|- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> ph ) |
| 49 |
|
eqcom |
|- ( B = A <-> A = B ) |
| 50 |
49
|
biimpi |
|- ( B = A -> A = B ) |
| 51 |
50
|
con3i |
|- ( -. A = B -> -. B = A ) |
| 52 |
51
|
adantl |
|- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> -. B = A ) |
| 53 |
|
simplr |
|- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> -. A < B ) |
| 54 |
|
pm4.56 |
|- ( ( -. B = A /\ -. A < B ) <-> -. ( B = A \/ A < B ) ) |
| 55 |
54
|
biimpi |
|- ( ( -. B = A /\ -. A < B ) -> -. ( B = A \/ A < B ) ) |
| 56 |
52 53 55
|
syl2anc |
|- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> -. ( B = A \/ A < B ) ) |
| 57 |
48 4
|
syl |
|- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> B e. RR ) |
| 58 |
48 3
|
syl |
|- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> A e. RR ) |
| 59 |
57 58
|
lttrid |
|- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> ( B < A <-> -. ( B = A \/ A < B ) ) ) |
| 60 |
56 59
|
mpbird |
|- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> B < A ) |
| 61 |
|
0ss |
|- (/) C_ CC |
| 62 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 63 |
62
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 64 |
|
rest0 |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t (/) ) = { (/) } ) |
| 65 |
63 64
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t (/) ) = { (/) } |
| 66 |
65
|
eqcomi |
|- { (/) } = ( ( TopOpen ` CCfld ) |`t (/) ) |
| 67 |
62 66 66
|
cncfcn |
|- ( ( (/) C_ CC /\ (/) C_ CC ) -> ( (/) -cn-> (/) ) = ( { (/) } Cn { (/) } ) ) |
| 68 |
61 61 67
|
mp2an |
|- ( (/) -cn-> (/) ) = ( { (/) } Cn { (/) } ) |
| 69 |
|
cncfss |
|- ( ( (/) C_ CC /\ CC C_ CC ) -> ( (/) -cn-> (/) ) C_ ( (/) -cn-> CC ) ) |
| 70 |
61 19 69
|
mp2an |
|- ( (/) -cn-> (/) ) C_ ( (/) -cn-> CC ) |
| 71 |
68 70
|
eqsstrri |
|- ( { (/) } Cn { (/) } ) C_ ( (/) -cn-> CC ) |
| 72 |
2
|
a1i |
|- ( ( ph /\ B < A ) -> G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) ) |
| 73 |
|
simpr |
|- ( ( ph /\ B < A ) -> B < A ) |
| 74 |
24
|
adantr |
|- ( ( ph /\ B < A ) -> A e. RR* ) |
| 75 |
4
|
rexrd |
|- ( ph -> B e. RR* ) |
| 76 |
75
|
adantr |
|- ( ( ph /\ B < A ) -> B e. RR* ) |
| 77 |
|
icc0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 78 |
74 76 77
|
syl2anc |
|- ( ( ph /\ B < A ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
| 79 |
73 78
|
mpbird |
|- ( ( ph /\ B < A ) -> ( A [,] B ) = (/) ) |
| 80 |
79
|
mpteq1d |
|- ( ( ph /\ B < A ) -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = ( x e. (/) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) ) |
| 81 |
|
mpt0 |
|- ( x e. (/) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = (/) |
| 82 |
81
|
a1i |
|- ( ( ph /\ B < A ) -> ( x e. (/) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = (/) ) |
| 83 |
72 80 82
|
3eqtrd |
|- ( ( ph /\ B < A ) -> G = (/) ) |
| 84 |
|
0cnf |
|- (/) e. ( { (/) } Cn { (/) } ) |
| 85 |
83 84
|
eqeltrdi |
|- ( ( ph /\ B < A ) -> G e. ( { (/) } Cn { (/) } ) ) |
| 86 |
71 85
|
sselid |
|- ( ( ph /\ B < A ) -> G e. ( (/) -cn-> CC ) ) |
| 87 |
79
|
eqcomd |
|- ( ( ph /\ B < A ) -> (/) = ( A [,] B ) ) |
| 88 |
87
|
oveq1d |
|- ( ( ph /\ B < A ) -> ( (/) -cn-> CC ) = ( ( A [,] B ) -cn-> CC ) ) |
| 89 |
86 88
|
eleqtrd |
|- ( ( ph /\ B < A ) -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 90 |
48 60 89
|
syl2anc |
|- ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 91 |
47 90
|
pm2.61dan |
|- ( ( ph /\ -. A < B ) -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 92 |
15 91
|
pm2.61dan |
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |