Metamath Proof Explorer


Theorem cncfiooicc

Description: A continuous function F on an open interval ( A (,) B ) can be extended to a continuous function G on the corresponding closed interval, if it has a finite right limit R in A and a finite left limit L in B . F can be complex-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfiooicc.x
|- F/ x ph
cncfiooicc.g
|- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) )
cncfiooicc.a
|- ( ph -> A e. RR )
cncfiooicc.b
|- ( ph -> B e. RR )
cncfiooicc.f
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) )
cncfiooicc.l
|- ( ph -> L e. ( F limCC B ) )
cncfiooicc.r
|- ( ph -> R e. ( F limCC A ) )
Assertion cncfiooicc
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) )

Proof

Step Hyp Ref Expression
1 cncfiooicc.x
 |-  F/ x ph
2 cncfiooicc.g
 |-  G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) )
3 cncfiooicc.a
 |-  ( ph -> A e. RR )
4 cncfiooicc.b
 |-  ( ph -> B e. RR )
5 cncfiooicc.f
 |-  ( ph -> F e. ( ( A (,) B ) -cn-> CC ) )
6 cncfiooicc.l
 |-  ( ph -> L e. ( F limCC B ) )
7 cncfiooicc.r
 |-  ( ph -> R e. ( F limCC A ) )
8 nfv
 |-  F/ x ( ph /\ A < B )
9 3 adantr
 |-  ( ( ph /\ A < B ) -> A e. RR )
10 4 adantr
 |-  ( ( ph /\ A < B ) -> B e. RR )
11 simpr
 |-  ( ( ph /\ A < B ) -> A < B )
12 5 adantr
 |-  ( ( ph /\ A < B ) -> F e. ( ( A (,) B ) -cn-> CC ) )
13 6 adantr
 |-  ( ( ph /\ A < B ) -> L e. ( F limCC B ) )
14 7 adantr
 |-  ( ( ph /\ A < B ) -> R e. ( F limCC A ) )
15 8 2 9 10 11 12 13 14 cncfiooicclem1
 |-  ( ( ph /\ A < B ) -> G e. ( ( A [,] B ) -cn-> CC ) )
16 limccl
 |-  ( F limCC A ) C_ CC
17 16 7 sseldi
 |-  ( ph -> R e. CC )
18 17 snssd
 |-  ( ph -> { R } C_ CC )
19 ssid
 |-  CC C_ CC
20 19 a1i
 |-  ( ph -> CC C_ CC )
21 cncfss
 |-  ( ( { R } C_ CC /\ CC C_ CC ) -> ( { A } -cn-> { R } ) C_ ( { A } -cn-> CC ) )
22 18 20 21 syl2anc
 |-  ( ph -> ( { A } -cn-> { R } ) C_ ( { A } -cn-> CC ) )
23 22 adantr
 |-  ( ( ph /\ A = B ) -> ( { A } -cn-> { R } ) C_ ( { A } -cn-> CC ) )
24 3 rexrd
 |-  ( ph -> A e. RR* )
25 iccid
 |-  ( A e. RR* -> ( A [,] A ) = { A } )
26 24 25 syl
 |-  ( ph -> ( A [,] A ) = { A } )
27 oveq2
 |-  ( A = B -> ( A [,] A ) = ( A [,] B ) )
28 26 27 sylan9req
 |-  ( ( ph /\ A = B ) -> { A } = ( A [,] B ) )
29 28 eqcomd
 |-  ( ( ph /\ A = B ) -> ( A [,] B ) = { A } )
30 simpr
 |-  ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) )
31 29 adantr
 |-  ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> ( A [,] B ) = { A } )
32 30 31 eleqtrd
 |-  ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> x e. { A } )
33 elsni
 |-  ( x e. { A } -> x = A )
34 32 33 syl
 |-  ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> x = A )
35 34 iftrued
 |-  ( ( ( ph /\ A = B ) /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R )
36 29 35 mpteq12dva
 |-  ( ( ph /\ A = B ) -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = ( x e. { A } |-> R ) )
37 2 36 syl5eq
 |-  ( ( ph /\ A = B ) -> G = ( x e. { A } |-> R ) )
38 3 recnd
 |-  ( ph -> A e. CC )
39 38 adantr
 |-  ( ( ph /\ A = B ) -> A e. CC )
40 17 adantr
 |-  ( ( ph /\ A = B ) -> R e. CC )
41 cncfdmsn
 |-  ( ( A e. CC /\ R e. CC ) -> ( x e. { A } |-> R ) e. ( { A } -cn-> { R } ) )
42 39 40 41 syl2anc
 |-  ( ( ph /\ A = B ) -> ( x e. { A } |-> R ) e. ( { A } -cn-> { R } ) )
43 37 42 eqeltrd
 |-  ( ( ph /\ A = B ) -> G e. ( { A } -cn-> { R } ) )
44 23 43 sseldd
 |-  ( ( ph /\ A = B ) -> G e. ( { A } -cn-> CC ) )
45 28 oveq1d
 |-  ( ( ph /\ A = B ) -> ( { A } -cn-> CC ) = ( ( A [,] B ) -cn-> CC ) )
46 44 45 eleqtrd
 |-  ( ( ph /\ A = B ) -> G e. ( ( A [,] B ) -cn-> CC ) )
47 46 adantlr
 |-  ( ( ( ph /\ -. A < B ) /\ A = B ) -> G e. ( ( A [,] B ) -cn-> CC ) )
48 simpll
 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> ph )
49 eqcom
 |-  ( B = A <-> A = B )
50 49 biimpi
 |-  ( B = A -> A = B )
51 50 con3i
 |-  ( -. A = B -> -. B = A )
52 51 adantl
 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> -. B = A )
53 simplr
 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> -. A < B )
54 pm4.56
 |-  ( ( -. B = A /\ -. A < B ) <-> -. ( B = A \/ A < B ) )
55 54 biimpi
 |-  ( ( -. B = A /\ -. A < B ) -> -. ( B = A \/ A < B ) )
56 52 53 55 syl2anc
 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> -. ( B = A \/ A < B ) )
57 48 4 syl
 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> B e. RR )
58 48 3 syl
 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> A e. RR )
59 57 58 lttrid
 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> ( B < A <-> -. ( B = A \/ A < B ) ) )
60 56 59 mpbird
 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> B < A )
61 0ss
 |-  (/) C_ CC
62 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
63 62 cnfldtop
 |-  ( TopOpen ` CCfld ) e. Top
64 rest0
 |-  ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t (/) ) = { (/) } )
65 63 64 ax-mp
 |-  ( ( TopOpen ` CCfld ) |`t (/) ) = { (/) }
66 65 eqcomi
 |-  { (/) } = ( ( TopOpen ` CCfld ) |`t (/) )
67 62 66 66 cncfcn
 |-  ( ( (/) C_ CC /\ (/) C_ CC ) -> ( (/) -cn-> (/) ) = ( { (/) } Cn { (/) } ) )
68 61 61 67 mp2an
 |-  ( (/) -cn-> (/) ) = ( { (/) } Cn { (/) } )
69 cncfss
 |-  ( ( (/) C_ CC /\ CC C_ CC ) -> ( (/) -cn-> (/) ) C_ ( (/) -cn-> CC ) )
70 61 19 69 mp2an
 |-  ( (/) -cn-> (/) ) C_ ( (/) -cn-> CC )
71 68 70 eqsstrri
 |-  ( { (/) } Cn { (/) } ) C_ ( (/) -cn-> CC )
72 2 a1i
 |-  ( ( ph /\ B < A ) -> G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) )
73 simpr
 |-  ( ( ph /\ B < A ) -> B < A )
74 24 adantr
 |-  ( ( ph /\ B < A ) -> A e. RR* )
75 4 rexrd
 |-  ( ph -> B e. RR* )
76 75 adantr
 |-  ( ( ph /\ B < A ) -> B e. RR* )
77 icc0
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) )
78 74 76 77 syl2anc
 |-  ( ( ph /\ B < A ) -> ( ( A [,] B ) = (/) <-> B < A ) )
79 73 78 mpbird
 |-  ( ( ph /\ B < A ) -> ( A [,] B ) = (/) )
80 79 mpteq1d
 |-  ( ( ph /\ B < A ) -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = ( x e. (/) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) )
81 mpt0
 |-  ( x e. (/) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = (/)
82 81 a1i
 |-  ( ( ph /\ B < A ) -> ( x e. (/) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = (/) )
83 72 80 82 3eqtrd
 |-  ( ( ph /\ B < A ) -> G = (/) )
84 0cnf
 |-  (/) e. ( { (/) } Cn { (/) } )
85 83 84 eqeltrdi
 |-  ( ( ph /\ B < A ) -> G e. ( { (/) } Cn { (/) } ) )
86 71 85 sseldi
 |-  ( ( ph /\ B < A ) -> G e. ( (/) -cn-> CC ) )
87 79 eqcomd
 |-  ( ( ph /\ B < A ) -> (/) = ( A [,] B ) )
88 87 oveq1d
 |-  ( ( ph /\ B < A ) -> ( (/) -cn-> CC ) = ( ( A [,] B ) -cn-> CC ) )
89 86 88 eleqtrd
 |-  ( ( ph /\ B < A ) -> G e. ( ( A [,] B ) -cn-> CC ) )
90 48 60 89 syl2anc
 |-  ( ( ( ph /\ -. A < B ) /\ -. A = B ) -> G e. ( ( A [,] B ) -cn-> CC ) )
91 47 90 pm2.61dan
 |-  ( ( ph /\ -. A < B ) -> G e. ( ( A [,] B ) -cn-> CC ) )
92 15 91 pm2.61dan
 |-  ( ph -> G e. ( ( A [,] B ) -cn-> CC ) )