Metamath Proof Explorer


Theorem cncfiooicc

Description: A continuous function F on an open interval ( A (,) B ) can be extended to a continuous function G on the corresponding closed interval, if it has a finite right limit R in A and a finite left limit L in B . F can be complex-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfiooicc.x x φ
cncfiooicc.g G = x A B if x = A R if x = B L F x
cncfiooicc.a φ A
cncfiooicc.b φ B
cncfiooicc.f φ F : A B cn
cncfiooicc.l φ L F lim B
cncfiooicc.r φ R F lim A
Assertion cncfiooicc φ G : A B cn

Proof

Step Hyp Ref Expression
1 cncfiooicc.x x φ
2 cncfiooicc.g G = x A B if x = A R if x = B L F x
3 cncfiooicc.a φ A
4 cncfiooicc.b φ B
5 cncfiooicc.f φ F : A B cn
6 cncfiooicc.l φ L F lim B
7 cncfiooicc.r φ R F lim A
8 nfv x φ A < B
9 3 adantr φ A < B A
10 4 adantr φ A < B B
11 simpr φ A < B A < B
12 5 adantr φ A < B F : A B cn
13 6 adantr φ A < B L F lim B
14 7 adantr φ A < B R F lim A
15 8 2 9 10 11 12 13 14 cncfiooicclem1 φ A < B G : A B cn
16 limccl F lim A
17 16 7 sseldi φ R
18 17 snssd φ R
19 ssid
20 19 a1i φ
21 cncfss R A cn R A cn
22 18 20 21 syl2anc φ A cn R A cn
23 22 adantr φ A = B A cn R A cn
24 3 rexrd φ A *
25 iccid A * A A = A
26 24 25 syl φ A A = A
27 oveq2 A = B A A = A B
28 26 27 sylan9req φ A = B A = A B
29 28 eqcomd φ A = B A B = A
30 simpr φ A = B x A B x A B
31 29 adantr φ A = B x A B A B = A
32 30 31 eleqtrd φ A = B x A B x A
33 elsni x A x = A
34 32 33 syl φ A = B x A B x = A
35 34 iftrued φ A = B x A B if x = A R if x = B L F x = R
36 29 35 mpteq12dva φ A = B x A B if x = A R if x = B L F x = x A R
37 2 36 syl5eq φ A = B G = x A R
38 3 recnd φ A
39 38 adantr φ A = B A
40 17 adantr φ A = B R
41 cncfdmsn A R x A R : A cn R
42 39 40 41 syl2anc φ A = B x A R : A cn R
43 37 42 eqeltrd φ A = B G : A cn R
44 23 43 sseldd φ A = B G : A cn
45 28 oveq1d φ A = B A cn = A B cn
46 44 45 eleqtrd φ A = B G : A B cn
47 46 adantlr φ ¬ A < B A = B G : A B cn
48 simpll φ ¬ A < B ¬ A = B φ
49 eqcom B = A A = B
50 49 biimpi B = A A = B
51 50 con3i ¬ A = B ¬ B = A
52 51 adantl φ ¬ A < B ¬ A = B ¬ B = A
53 simplr φ ¬ A < B ¬ A = B ¬ A < B
54 pm4.56 ¬ B = A ¬ A < B ¬ B = A A < B
55 54 biimpi ¬ B = A ¬ A < B ¬ B = A A < B
56 52 53 55 syl2anc φ ¬ A < B ¬ A = B ¬ B = A A < B
57 48 4 syl φ ¬ A < B ¬ A = B B
58 48 3 syl φ ¬ A < B ¬ A = B A
59 57 58 lttrid φ ¬ A < B ¬ A = B B < A ¬ B = A A < B
60 56 59 mpbird φ ¬ A < B ¬ A = B B < A
61 0ss
62 eqid TopOpen fld = TopOpen fld
63 62 cnfldtop TopOpen fld Top
64 rest0 TopOpen fld Top TopOpen fld 𝑡 =
65 63 64 ax-mp TopOpen fld 𝑡 =
66 65 eqcomi = TopOpen fld 𝑡
67 62 66 66 cncfcn cn = Cn
68 61 61 67 mp2an cn = Cn
69 cncfss cn cn
70 61 19 69 mp2an cn cn
71 68 70 eqsstrri Cn cn
72 2 a1i φ B < A G = x A B if x = A R if x = B L F x
73 simpr φ B < A B < A
74 24 adantr φ B < A A *
75 4 rexrd φ B *
76 75 adantr φ B < A B *
77 icc0 A * B * A B = B < A
78 74 76 77 syl2anc φ B < A A B = B < A
79 73 78 mpbird φ B < A A B =
80 79 mpteq1d φ B < A x A B if x = A R if x = B L F x = x if x = A R if x = B L F x
81 mpt0 x if x = A R if x = B L F x =
82 81 a1i φ B < A x if x = A R if x = B L F x =
83 72 80 82 3eqtrd φ B < A G =
84 0cnf Cn
85 83 84 eqeltrdi φ B < A G Cn
86 71 85 sseldi φ B < A G : cn
87 79 eqcomd φ B < A = A B
88 87 oveq1d φ B < A cn = A B cn
89 86 88 eleqtrd φ B < A G : A B cn
90 48 60 89 syl2anc φ ¬ A < B ¬ A = B G : A B cn
91 47 90 pm2.61dan φ ¬ A < B G : A B cn
92 15 91 pm2.61dan φ G : A B cn