Metamath Proof Explorer


Theorem cncfiooicclem1

Description: A continuous function F on an open interval ( A (,) B ) can be extended to a continuous function G on the corresponding closed interval, if it has a finite right limit R in A and a finite left limit L in B . F can be complex-valued. This lemma assumes A < B , the invoking theorem drops this assumption. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfiooicclem1.x xφ
cncfiooicclem1.g G=xABifx=ARifx=BLFx
cncfiooicclem1.a φA
cncfiooicclem1.b φB
cncfiooicclem1.altb φA<B
cncfiooicclem1.f φF:ABcn
cncfiooicclem1.l φLFlimB
cncfiooicclem1.r φRFlimA
Assertion cncfiooicclem1 φG:ABcn

Proof

Step Hyp Ref Expression
1 cncfiooicclem1.x xφ
2 cncfiooicclem1.g G=xABifx=ARifx=BLFx
3 cncfiooicclem1.a φA
4 cncfiooicclem1.b φB
5 cncfiooicclem1.altb φA<B
6 cncfiooicclem1.f φF:ABcn
7 cncfiooicclem1.l φLFlimB
8 cncfiooicclem1.r φRFlimA
9 limccl FlimA
10 9 8 sselid φR
11 10 ad2antrr φxABx=AR
12 limccl FlimB
13 12 7 sselid φL
14 13 ad3antrrr φxAB¬x=Ax=BL
15 simplll φxAB¬x=A¬x=Bφ
16 orel1 ¬x=Ax=Ax=Bx=B
17 16 con3dimp ¬x=A¬x=B¬x=Ax=B
18 vex xV
19 18 elpr xABx=Ax=B
20 17 19 sylnibr ¬x=A¬x=B¬xAB
21 20 adantll φxAB¬x=A¬x=B¬xAB
22 simpllr φxAB¬x=A¬x=BxAB
23 3 rexrd φA*
24 15 23 syl φxAB¬x=A¬x=BA*
25 4 rexrd φB*
26 15 25 syl φxAB¬x=A¬x=BB*
27 3 4 5 ltled φAB
28 15 27 syl φxAB¬x=A¬x=BAB
29 prunioo A*B*ABABAB=AB
30 24 26 28 29 syl3anc φxAB¬x=A¬x=BABAB=AB
31 22 30 eleqtrrd φxAB¬x=A¬x=BxABAB
32 elun xABABxABxAB
33 31 32 sylib φxAB¬x=A¬x=BxABxAB
34 orel2 ¬xABxABxABxAB
35 21 33 34 sylc φxAB¬x=A¬x=BxAB
36 cncff F:ABcnF:AB
37 6 36 syl φF:AB
38 37 ffvelcdmda φxABFx
39 15 35 38 syl2anc φxAB¬x=A¬x=BFx
40 14 39 ifclda φxAB¬x=Aifx=BLFx
41 11 40 ifclda φxABifx=ARifx=BLFx
42 1 41 2 fmptdf φG:AB
43 elun yABAByAByAB
44 23 25 27 29 syl3anc φABAB=AB
45 44 eleq2d φyABAByAB
46 43 45 bitr3id φyAByAByAB
47 46 biimpar φyAByAByAB
48 ioossicc ABAB
49 fssres G:ABABABGAB:AB
50 42 48 49 sylancl φGAB:AB
51 50 feqmptd φGAB=yABGABy
52 nfmpt1 _xxABifx=ARifx=BLFx
53 2 52 nfcxfr _xG
54 nfcv _xAB
55 53 54 nfres _xGAB
56 nfcv _xy
57 55 56 nffv _xGABy
58 nfcv _yGAB
59 nfcv _yx
60 58 59 nffv _yGABx
61 fveq2 y=xGABy=GABx
62 57 60 61 cbvmpt yABGABy=xABGABx
63 62 a1i φyABGABy=xABGABx
64 fvres xABGABx=Gx
65 64 adantl φxABGABx=Gx
66 simpr φxABxAB
67 48 66 sselid φxABxAB
68 10 adantr φxABR
69 13 ad2antrr φxABx=BL
70 38 adantr φxAB¬x=BFx
71 69 70 ifclda φxABifx=BLFx
72 68 71 ifcld φxABifx=ARifx=BLFx
73 2 fvmpt2 xABifx=ARifx=BLFxGx=ifx=ARifx=BLFx
74 67 72 73 syl2anc φxABGx=ifx=ARifx=BLFx
75 elioo4g xABA*B*xA<xx<B
76 75 biimpi xABA*B*xA<xx<B
77 76 simpld xABA*B*x
78 77 simp1d xABA*
79 elioore xABx
80 79 rexrd xABx*
81 eliooord xABA<xx<B
82 81 simpld xABA<x
83 xrltne A*x*A<xxA
84 78 80 82 83 syl3anc xABxA
85 84 adantl φxABxA
86 85 neneqd φxAB¬x=A
87 86 iffalsed φxABifx=ARifx=BLFx=ifx=BLFx
88 81 simprd xABx<B
89 79 88 ltned xABxB
90 89 neneqd xAB¬x=B
91 90 iffalsed xABifx=BLFx=Fx
92 91 adantl φxABifx=BLFx=Fx
93 87 92 eqtrd φxABifx=ARifx=BLFx=Fx
94 65 74 93 3eqtrd φxABGABx=Fx
95 1 94 mpteq2da φxABGABx=xABFx
96 51 63 95 3eqtrd φGAB=xABFx
97 37 feqmptd φF=xABFx
98 ioosscn AB
99 98 a1i φAB
100 ssid
101 eqid TopOpenfld=TopOpenfld
102 eqid TopOpenfld𝑡AB=TopOpenfld𝑡AB
103 101 cnfldtop TopOpenfldTop
104 unicntop =TopOpenfld
105 104 restid TopOpenfldTopTopOpenfld𝑡=TopOpenfld
106 103 105 ax-mp TopOpenfld𝑡=TopOpenfld
107 106 eqcomi TopOpenfld=TopOpenfld𝑡
108 101 102 107 cncfcn ABABcn=TopOpenfld𝑡ABCnTopOpenfld
109 99 100 108 sylancl φABcn=TopOpenfld𝑡ABCnTopOpenfld
110 6 97 109 3eltr3d φxABFxTopOpenfld𝑡ABCnTopOpenfld
111 96 110 eqeltrd φGABTopOpenfld𝑡ABCnTopOpenfld
112 104 restuni TopOpenfldTopABAB=TopOpenfld𝑡AB
113 103 98 112 mp2an AB=TopOpenfld𝑡AB
114 113 cncnpi GABTopOpenfld𝑡ABCnTopOpenfldyABGABTopOpenfld𝑡ABCnPTopOpenfldy
115 111 114 sylan φyABGABTopOpenfld𝑡ABCnPTopOpenfldy
116 103 a1i φyABTopOpenfldTop
117 48 a1i φyABABAB
118 ovex ABV
119 118 a1i φyABABV
120 restabs TopOpenfldTopABABABVTopOpenfld𝑡AB𝑡AB=TopOpenfld𝑡AB
121 116 117 119 120 syl3anc φyABTopOpenfld𝑡AB𝑡AB=TopOpenfld𝑡AB
122 121 eqcomd φyABTopOpenfld𝑡AB=TopOpenfld𝑡AB𝑡AB
123 122 oveq1d φyABTopOpenfld𝑡ABCnPTopOpenfld=TopOpenfld𝑡AB𝑡ABCnPTopOpenfld
124 123 fveq1d φyABTopOpenfld𝑡ABCnPTopOpenfldy=TopOpenfld𝑡AB𝑡ABCnPTopOpenfldy
125 115 124 eleqtrd φyABGABTopOpenfld𝑡AB𝑡ABCnPTopOpenfldy
126 resttop TopOpenfldTopABVTopOpenfld𝑡ABTop
127 103 118 126 mp2an TopOpenfld𝑡ABTop
128 127 a1i φyABTopOpenfld𝑡ABTop
129 48 a1i φABAB
130 3 4 iccssred φAB
131 ax-resscn
132 130 131 sstrdi φAB
133 104 restuni TopOpenfldTopABAB=TopOpenfld𝑡AB
134 103 132 133 sylancr φAB=TopOpenfld𝑡AB
135 129 134 sseqtrd φABTopOpenfld𝑡AB
136 135 adantr φyABABTopOpenfld𝑡AB
137 retop topGenran.Top
138 137 a1i φyABtopGenran.Top
139 ioossre AB
140 difss AB
141 139 140 unssi ABAB
142 141 a1i φyABABAB
143 ssun1 ABABAB
144 143 a1i φyABABABAB
145 uniretop =topGenran.
146 145 ntrss topGenran.TopABABABABABinttopGenran.ABinttopGenran.ABAB
147 138 142 144 146 syl3anc φyABinttopGenran.ABinttopGenran.ABAB
148 simpr φyAByAB
149 ioontr inttopGenran.AB=AB
150 148 149 eleqtrrdi φyAByinttopGenran.AB
151 147 150 sseldd φyAByinttopGenran.ABAB
152 48 148 sselid φyAByAB
153 151 152 elind φyAByinttopGenran.ABABAB
154 130 adantr φyABAB
155 eqid topGenran.𝑡AB=topGenran.𝑡AB
156 145 155 restntr topGenran.TopABABABinttopGenran.𝑡ABAB=inttopGenran.ABABAB
157 138 154 117 156 syl3anc φyABinttopGenran.𝑡ABAB=inttopGenran.ABABAB
158 153 157 eleqtrrd φyAByinttopGenran.𝑡ABAB
159 101 tgioo2 topGenran.=TopOpenfld𝑡
160 159 a1i φtopGenran.=TopOpenfld𝑡
161 160 oveq1d φtopGenran.𝑡AB=TopOpenfld𝑡𝑡AB
162 103 a1i φTopOpenfldTop
163 reex V
164 163 a1i φV
165 restabs TopOpenfldTopABVTopOpenfld𝑡𝑡AB=TopOpenfld𝑡AB
166 162 130 164 165 syl3anc φTopOpenfld𝑡𝑡AB=TopOpenfld𝑡AB
167 161 166 eqtrd φtopGenran.𝑡AB=TopOpenfld𝑡AB
168 167 fveq2d φinttopGenran.𝑡AB=intTopOpenfld𝑡AB
169 168 fveq1d φinttopGenran.𝑡ABAB=intTopOpenfld𝑡ABAB
170 169 adantr φyABinttopGenran.𝑡ABAB=intTopOpenfld𝑡ABAB
171 158 170 eleqtrd φyAByintTopOpenfld𝑡ABAB
172 134 feq2d φG:ABG:TopOpenfld𝑡AB
173 42 172 mpbid φG:TopOpenfld𝑡AB
174 173 adantr φyABG:TopOpenfld𝑡AB
175 eqid TopOpenfld𝑡AB=TopOpenfld𝑡AB
176 175 104 cnprest TopOpenfld𝑡ABTopABTopOpenfld𝑡AByintTopOpenfld𝑡ABABG:TopOpenfld𝑡ABGTopOpenfld𝑡ABCnPTopOpenfldyGABTopOpenfld𝑡AB𝑡ABCnPTopOpenfldy
177 128 136 171 174 176 syl22anc φyABGTopOpenfld𝑡ABCnPTopOpenfldyGABTopOpenfld𝑡AB𝑡ABCnPTopOpenfldy
178 125 177 mpbird φyABGTopOpenfld𝑡ABCnPTopOpenfldy
179 elpri yABy=Ay=B
180 iftrue x=Aifx=ARifx=BLFx=R
181 lbicc2 A*B*ABAAB
182 23 25 27 181 syl3anc φAAB
183 2 180 182 8 fvmptd3 φGA=R
184 97 eqcomd φxABFx=F
185 96 184 eqtr2d φF=GAB
186 185 oveq1d φFlimA=GABlimA
187 8 186 eleqtrd φRGABlimA
188 3 4 5 42 limciccioolb φGABlimA=GlimA
189 187 188 eleqtrd φRGlimA
190 183 189 eqeltrd φGAGlimA
191 eqid TopOpenfld𝑡AB=TopOpenfld𝑡AB
192 101 191 cnplimc ABAABGTopOpenfld𝑡ABCnPTopOpenfldAG:ABGAGlimA
193 132 182 192 syl2anc φGTopOpenfld𝑡ABCnPTopOpenfldAG:ABGAGlimA
194 42 190 193 mpbir2and φGTopOpenfld𝑡ABCnPTopOpenfldA
195 194 adantr φy=AGTopOpenfld𝑡ABCnPTopOpenfldA
196 fveq2 y=ATopOpenfld𝑡ABCnPTopOpenfldy=TopOpenfld𝑡ABCnPTopOpenfldA
197 196 eqcomd y=ATopOpenfld𝑡ABCnPTopOpenfldA=TopOpenfld𝑡ABCnPTopOpenfldy
198 197 adantl φy=ATopOpenfld𝑡ABCnPTopOpenfldA=TopOpenfld𝑡ABCnPTopOpenfldy
199 195 198 eleqtrd φy=AGTopOpenfld𝑡ABCnPTopOpenfldy
200 180 adantl x=Bx=Aifx=ARifx=BLFx=R
201 eqtr2 x=Bx=AB=A
202 iftrue B=AifB=ARifB=BLFB=R
203 202 eqcomd B=AR=ifB=ARifB=BLFB
204 201 203 syl x=Bx=AR=ifB=ARifB=BLFB
205 200 204 eqtrd x=Bx=Aifx=ARifx=BLFx=ifB=ARifB=BLFB
206 iffalse ¬x=Aifx=ARifx=BLFx=ifx=BLFx
207 206 adantl x=B¬x=Aifx=ARifx=BLFx=ifx=BLFx
208 iftrue x=Bifx=BLFx=L
209 208 adantr x=B¬x=Aifx=BLFx=L
210 df-ne xA¬x=A
211 pm13.18 x=BxABA
212 210 211 sylan2br x=B¬x=ABA
213 212 neneqd x=B¬x=A¬B=A
214 213 iffalsed x=B¬x=AifB=ARifB=BLFB=ifB=BLFB
215 eqid B=B
216 215 iftruei ifB=BLFB=L
217 214 216 eqtr2di x=B¬x=AL=ifB=ARifB=BLFB
218 207 209 217 3eqtrd x=B¬x=Aifx=ARifx=BLFx=ifB=ARifB=BLFB
219 205 218 pm2.61dan x=Bifx=ARifx=BLFx=ifB=ARifB=BLFB
220 4 leidd φBB
221 3 4 4 27 220 eliccd φBAB
222 216 13 eqeltrid φifB=BLFB
223 10 222 ifcld φifB=ARifB=BLFB
224 2 219 221 223 fvmptd3 φGB=ifB=ARifB=BLFB
225 3 5 gtned φBA
226 225 neneqd φ¬B=A
227 226 iffalsed φifB=ARifB=BLFB=ifB=BLFB
228 216 a1i φifB=BLFB=L
229 224 227 228 3eqtrd φGB=L
230 185 oveq1d φFlimB=GABlimB
231 7 230 eleqtrd φLGABlimB
232 3 4 5 42 limcicciooub φGABlimB=GlimB
233 231 232 eleqtrd φLGlimB
234 229 233 eqeltrd φGBGlimB
235 101 191 cnplimc ABBABGTopOpenfld𝑡ABCnPTopOpenfldBG:ABGBGlimB
236 132 221 235 syl2anc φGTopOpenfld𝑡ABCnPTopOpenfldBG:ABGBGlimB
237 42 234 236 mpbir2and φGTopOpenfld𝑡ABCnPTopOpenfldB
238 237 adantr φy=BGTopOpenfld𝑡ABCnPTopOpenfldB
239 fveq2 y=BTopOpenfld𝑡ABCnPTopOpenfldy=TopOpenfld𝑡ABCnPTopOpenfldB
240 239 eqcomd y=BTopOpenfld𝑡ABCnPTopOpenfldB=TopOpenfld𝑡ABCnPTopOpenfldy
241 240 adantl φy=BTopOpenfld𝑡ABCnPTopOpenfldB=TopOpenfld𝑡ABCnPTopOpenfldy
242 238 241 eleqtrd φy=BGTopOpenfld𝑡ABCnPTopOpenfldy
243 199 242 jaodan φy=Ay=BGTopOpenfld𝑡ABCnPTopOpenfldy
244 179 243 sylan2 φyABGTopOpenfld𝑡ABCnPTopOpenfldy
245 178 244 jaodan φyAByABGTopOpenfld𝑡ABCnPTopOpenfldy
246 47 245 syldan φyABGTopOpenfld𝑡ABCnPTopOpenfldy
247 246 ralrimiva φyABGTopOpenfld𝑡ABCnPTopOpenfldy
248 101 cnfldtopon TopOpenfldTopOn
249 resttopon TopOpenfldTopOnABTopOpenfld𝑡ABTopOnAB
250 248 132 249 sylancr φTopOpenfld𝑡ABTopOnAB
251 cncnp TopOpenfld𝑡ABTopOnABTopOpenfldTopOnGTopOpenfld𝑡ABCnTopOpenfldG:AByABGTopOpenfld𝑡ABCnPTopOpenfldy
252 250 248 251 sylancl φGTopOpenfld𝑡ABCnTopOpenfldG:AByABGTopOpenfld𝑡ABCnPTopOpenfldy
253 42 247 252 mpbir2and φGTopOpenfld𝑡ABCnTopOpenfld
254 101 191 107 cncfcn ABABcn=TopOpenfld𝑡ABCnTopOpenfld
255 132 100 254 sylancl φABcn=TopOpenfld𝑡ABCnTopOpenfld
256 253 255 eleqtrrd φG:ABcn