Description: A continuous function F on an open interval ( A (,) B ) can be extended to a continuous function G on the corresponding closed interval, if it has a finite right limit R in A and a finite left limit L in B . F can be complex-valued. This lemma assumes A < B , the invoking theorem drops this assumption. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cncfiooicclem1.x | |
|
cncfiooicclem1.g | |
||
cncfiooicclem1.a | |
||
cncfiooicclem1.b | |
||
cncfiooicclem1.altb | |
||
cncfiooicclem1.f | |
||
cncfiooicclem1.l | |
||
cncfiooicclem1.r | |
||
Assertion | cncfiooicclem1 | |