Metamath Proof Explorer


Theorem cnplimc

Description: A function is continuous at B iff its limit at B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses cnplimc.k K = TopOpen fld
cnplimc.j J = K 𝑡 A
Assertion cnplimc A B A F J CnP K B F : A F B F lim B

Proof

Step Hyp Ref Expression
1 cnplimc.k K = TopOpen fld
2 cnplimc.j J = K 𝑡 A
3 1 cnfldtopon K TopOn
4 simpl A B A A
5 resttopon K TopOn A K 𝑡 A TopOn A
6 3 4 5 sylancr A B A K 𝑡 A TopOn A
7 2 6 eqeltrid A B A J TopOn A
8 cnpf2 J TopOn A K TopOn F J CnP K B F : A
9 8 3expia J TopOn A K TopOn F J CnP K B F : A
10 7 3 9 sylancl A B A F J CnP K B F : A
11 10 pm4.71rd A B A F J CnP K B F : A F J CnP K B
12 simpr A B A F : A F : A
13 simplr A B A F : A B A
14 13 snssd A B A F : A B A
15 ssequn2 B A A B = A
16 14 15 sylib A B A F : A A B = A
17 16 feq2d A B A F : A F : A B F : A
18 12 17 mpbird A B A F : A F : A B
19 18 feqmptd A B A F : A F = x A B F x
20 16 oveq2d A B A F : A K 𝑡 A B = K 𝑡 A
21 2 20 eqtr4id A B A F : A J = K 𝑡 A B
22 21 oveq1d A B A F : A J CnP K = K 𝑡 A B CnP K
23 22 fveq1d A B A F : A J CnP K B = K 𝑡 A B CnP K B
24 19 23 eleq12d A B A F : A F J CnP K B x A B F x K 𝑡 A B CnP K B
25 eqid K 𝑡 A B = K 𝑡 A B
26 ifid if x = B F x F x = F x
27 fveq2 x = B F x = F B
28 27 adantl x A B x = B F x = F B
29 28 ifeq1da x A B if x = B F x F x = if x = B F B F x
30 26 29 syl5eqr x A B F x = if x = B F B F x
31 30 mpteq2ia x A B F x = x A B if x = B F B F x
32 simpll A B A F : A A
33 32 13 sseldd A B A F : A B
34 25 1 31 12 32 33 ellimc A B A F : A F B F lim B x A B F x K 𝑡 A B CnP K B
35 24 34 bitr4d A B A F : A F J CnP K B F B F lim B
36 35 pm5.32da A B A F : A F J CnP K B F : A F B F lim B
37 11 36 bitrd A B A F J CnP K B F : A F B F lim B