| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncfiooicclem1.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
cncfiooicclem1.g |
⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 3 |
|
cncfiooicclem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 4 |
|
cncfiooicclem1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 5 |
|
cncfiooicclem1.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 6 |
|
cncfiooicclem1.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 7 |
|
cncfiooicclem1.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 8 |
|
cncfiooicclem1.r |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) |
| 9 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐴 ) ⊆ ℂ |
| 10 |
9 8
|
sselid |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 11 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → 𝑅 ∈ ℂ ) |
| 12 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ |
| 13 |
12 7
|
sselid |
⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
| 14 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝐿 ∈ ℂ ) |
| 15 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝜑 ) |
| 16 |
|
orel1 |
⊢ ( ¬ 𝑥 = 𝐴 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) ) |
| 17 |
16
|
con3dimp |
⊢ ( ( ¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵 ) → ¬ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 18 |
|
vex |
⊢ 𝑥 ∈ V |
| 19 |
18
|
elpr |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 20 |
17 19
|
sylnibr |
⊢ ( ( ¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵 ) → ¬ 𝑥 ∈ { 𝐴 , 𝐵 } ) |
| 21 |
20
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ¬ 𝑥 ∈ { 𝐴 , 𝐵 } ) |
| 22 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 23 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 24 |
15 23
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 25 |
4
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 26 |
15 25
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 27 |
3 4 5
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 28 |
15 27
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 29 |
|
prunioo |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 30 |
24 26 28 29
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 31 |
22 30
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) |
| 32 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑥 ∈ { 𝐴 , 𝐵 } ) ) |
| 33 |
31 32
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑥 ∈ { 𝐴 , 𝐵 } ) ) |
| 34 |
|
orel2 |
⊢ ( ¬ 𝑥 ∈ { 𝐴 , 𝐵 } → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑥 ∈ { 𝐴 , 𝐵 } ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
| 35 |
21 33 34
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 36 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 37 |
6 36
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 38 |
37
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 39 |
15 35 38
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 40 |
14 39
|
ifclda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 41 |
11 40
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 42 |
1 41 2
|
fmptdf |
⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 43 |
|
elun |
⊢ ( 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ) |
| 44 |
23 25 27 29
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 45 |
44
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 46 |
43 45
|
bitr3id |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 47 |
46
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ) |
| 48 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 49 |
|
fssres |
⊢ ( ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 50 |
42 48 49
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 51 |
50
|
feqmptd |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) ) ) |
| 52 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 53 |
2 52
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐺 |
| 54 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐴 (,) 𝐵 ) |
| 55 |
53 54
|
nfres |
⊢ Ⅎ 𝑥 ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) |
| 56 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 57 |
55 56
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) |
| 58 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) |
| 59 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑥 |
| 60 |
58 59
|
nffv |
⊢ Ⅎ 𝑦 ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) |
| 61 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) = ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) |
| 62 |
57 60 61
|
cbvmpt |
⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) |
| 64 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 66 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 67 |
48 66
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 68 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑅 ∈ ℂ ) |
| 69 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝐵 ) → 𝐿 ∈ ℂ ) |
| 70 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 71 |
69 70
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 72 |
68 71
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 73 |
2
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 74 |
67 72 73
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 75 |
|
elioo4g |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 76 |
75
|
biimpi |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 77 |
76
|
simpld |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ ) ) |
| 78 |
77
|
simp1d |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 79 |
|
elioore |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ ) |
| 80 |
79
|
rexrd |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ* ) |
| 81 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 82 |
81
|
simpld |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 < 𝑥 ) |
| 83 |
|
xrltne |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ) → 𝑥 ≠ 𝐴 ) |
| 84 |
78 80 82 83
|
syl3anc |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ≠ 𝐴 ) |
| 85 |
84
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ≠ 𝐴 ) |
| 86 |
85
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 = 𝐴 ) |
| 87 |
86
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 88 |
81
|
simprd |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 < 𝐵 ) |
| 89 |
79 88
|
ltned |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ≠ 𝐵 ) |
| 90 |
89
|
neneqd |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ¬ 𝑥 = 𝐵 ) |
| 91 |
90
|
iffalsed |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 93 |
87 92
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 94 |
65 74 93
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 95 |
1 94
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 96 |
51 63 95
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 97 |
37
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 98 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
| 99 |
98
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
| 100 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 101 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 102 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) |
| 103 |
101
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 104 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 105 |
104
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 106 |
103 105
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 107 |
106
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 108 |
101 102 107
|
cncfcn |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 109 |
99 100 108
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 110 |
6 97 109
|
3eltr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 111 |
96 110
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 112 |
104
|
restuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) → ( 𝐴 (,) 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
| 113 |
103 98 112
|
mp2an |
⊢ ( 𝐴 (,) 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) |
| 114 |
113
|
cncnpi |
⊢ ( ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 115 |
111 114
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 116 |
103
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 117 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 118 |
|
ovex |
⊢ ( 𝐴 [,] 𝐵 ) ∈ V |
| 119 |
118
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) ∈ V ) |
| 120 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
| 121 |
116 117 119 120
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
| 122 |
121
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
| 123 |
122
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ) |
| 124 |
123
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 125 |
115 124
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 126 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top ) |
| 127 |
103 118 126
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top |
| 128 |
127
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top ) |
| 129 |
48
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 130 |
3 4
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 131 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 132 |
130 131
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 133 |
104
|
restuni |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( 𝐴 [,] 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 134 |
103 132 133
|
sylancr |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 135 |
129 134
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 137 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 138 |
137
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( topGen ‘ ran (,) ) ∈ Top ) |
| 139 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 140 |
|
difss |
⊢ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ |
| 141 |
139 140
|
unssi |
⊢ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ |
| 142 |
141
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ) |
| 143 |
|
ssun1 |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) |
| 144 |
143
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 145 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 146 |
145
|
ntrss |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 147 |
138 142 144 146
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 148 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 149 |
|
ioontr |
⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) |
| 150 |
148 149
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 151 |
147 150
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 152 |
48 148
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 153 |
151 152
|
elind |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 154 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 155 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) |
| 156 |
145 155
|
restntr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 157 |
138 154 117 156
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 158 |
153 157
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 159 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 160 |
159
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 161 |
160
|
oveq1d |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 162 |
103
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 163 |
|
reex |
⊢ ℝ ∈ V |
| 164 |
163
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 165 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 166 |
162 130 164 165
|
syl3anc |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 167 |
161 166
|
eqtrd |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 168 |
167
|
fveq2d |
⊢ ( 𝜑 → ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
| 169 |
168
|
fveq1d |
⊢ ( 𝜑 → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 170 |
169
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 171 |
158 170
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 172 |
134
|
feq2d |
⊢ ( 𝜑 → ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ↔ 𝐺 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) ) |
| 173 |
42 172
|
mpbid |
⊢ ( 𝜑 → 𝐺 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) |
| 174 |
173
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐺 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) |
| 175 |
|
eqid |
⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) |
| 176 |
175 104
|
cnprest |
⊢ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ∧ 𝐺 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) |
| 177 |
128 136 171 174 176
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) |
| 178 |
125 177
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 179 |
|
elpri |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } → ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) |
| 180 |
|
iftrue |
⊢ ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝑅 ) |
| 181 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 182 |
23 25 27 181
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 183 |
2 180 182 8
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) = 𝑅 ) |
| 184 |
97
|
eqcomd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) = 𝐹 ) |
| 185 |
96 184
|
eqtr2d |
⊢ ( 𝜑 → 𝐹 = ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ) |
| 186 |
185
|
oveq1d |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐴 ) = ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) ) |
| 187 |
8 186
|
eleqtrd |
⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) ) |
| 188 |
3 4 5 42
|
limciccioolb |
⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) = ( 𝐺 limℂ 𝐴 ) ) |
| 189 |
187 188
|
eleqtrd |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐺 limℂ 𝐴 ) ) |
| 190 |
183 189
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) ∈ ( 𝐺 limℂ 𝐴 ) ) |
| 191 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) |
| 192 |
101 191
|
cnplimc |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ( 𝐺 limℂ 𝐴 ) ) ) ) |
| 193 |
132 182 192
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ( 𝐺 limℂ 𝐴 ) ) ) ) |
| 194 |
42 190 193
|
mpbir2and |
⊢ ( 𝜑 → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ) |
| 195 |
194
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ) |
| 196 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ) |
| 197 |
196
|
eqcomd |
⊢ ( 𝑦 = 𝐴 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 198 |
197
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 199 |
195 198
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 200 |
180
|
adantl |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝑅 ) |
| 201 |
|
eqtr2 |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐴 ) |
| 202 |
|
iftrue |
⊢ ( 𝐵 = 𝐴 → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) = 𝑅 ) |
| 203 |
202
|
eqcomd |
⊢ ( 𝐵 = 𝐴 → 𝑅 = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 204 |
201 203
|
syl |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 = 𝐴 ) → 𝑅 = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 205 |
200 204
|
eqtrd |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 206 |
|
iffalse |
⊢ ( ¬ 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 207 |
206
|
adantl |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 208 |
|
iftrue |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = 𝐿 ) |
| 209 |
208
|
adantr |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = 𝐿 ) |
| 210 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝐴 ↔ ¬ 𝑥 = 𝐴 ) |
| 211 |
|
pm13.18 |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 ≠ 𝐴 ) → 𝐵 ≠ 𝐴 ) |
| 212 |
210 211
|
sylan2br |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → 𝐵 ≠ 𝐴 ) |
| 213 |
212
|
neneqd |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → ¬ 𝐵 = 𝐴 ) |
| 214 |
213
|
iffalsed |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) |
| 215 |
|
eqid |
⊢ 𝐵 = 𝐵 |
| 216 |
215
|
iftruei |
⊢ if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) = 𝐿 |
| 217 |
214 216
|
eqtr2di |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → 𝐿 = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 218 |
207 209 217
|
3eqtrd |
⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 219 |
205 218
|
pm2.61dan |
⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 220 |
4
|
leidd |
⊢ ( 𝜑 → 𝐵 ≤ 𝐵 ) |
| 221 |
3 4 4 27 220
|
eliccd |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 222 |
216 13
|
eqeltrid |
⊢ ( 𝜑 → if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ∈ ℂ ) |
| 223 |
10 222
|
ifcld |
⊢ ( 𝜑 → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 224 |
2 219 221 223
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 225 |
3 5
|
gtned |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
| 226 |
225
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐵 = 𝐴 ) |
| 227 |
226
|
iffalsed |
⊢ ( 𝜑 → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) |
| 228 |
216
|
a1i |
⊢ ( 𝜑 → if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) = 𝐿 ) |
| 229 |
224 227 228
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) = 𝐿 ) |
| 230 |
185
|
oveq1d |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) ) |
| 231 |
7 230
|
eleqtrd |
⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) ) |
| 232 |
3 4 5 42
|
limcicciooub |
⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) = ( 𝐺 limℂ 𝐵 ) ) |
| 233 |
231 232
|
eleqtrd |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐺 limℂ 𝐵 ) ) |
| 234 |
229 233
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ( 𝐺 limℂ 𝐵 ) ) |
| 235 |
101 191
|
cnplimc |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺 ‘ 𝐵 ) ∈ ( 𝐺 limℂ 𝐵 ) ) ) ) |
| 236 |
132 221 235
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺 ‘ 𝐵 ) ∈ ( 𝐺 limℂ 𝐵 ) ) ) ) |
| 237 |
42 234 236
|
mpbir2and |
⊢ ( 𝜑 → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) |
| 238 |
237
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) |
| 239 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) |
| 240 |
239
|
eqcomd |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 241 |
240
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 242 |
238 241
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 243 |
199 242
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 244 |
179 243
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 245 |
178 244
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 246 |
47 245
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 247 |
246
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 248 |
101
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 249 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 250 |
248 132 249
|
sylancr |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 251 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐺 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) ) |
| 252 |
250 248 251
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) ) |
| 253 |
42 247 252
|
mpbir2and |
⊢ ( 𝜑 → 𝐺 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 254 |
101 191 107
|
cncfcn |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 255 |
132 100 254
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 256 |
253 255
|
eleqtrrd |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |