| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcicciooub.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
limcicciooub.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
limcicciooub.3 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 4 |
|
limcicciooub.4 |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 5 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 7 |
1 2
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 8 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 9 |
7 8
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 10 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 11 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) |
| 12 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ Top ) |
| 14 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 15 |
|
iocssre |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
| 16 |
14 2 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
| 17 |
|
difssd |
⊢ ( 𝜑 → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ) |
| 18 |
16 17
|
unssd |
⊢ ( 𝜑 → ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ) |
| 19 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 20 |
18 19
|
sseqtrdi |
⊢ ( 𝜑 → ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ∪ ( topGen ‘ ran (,) ) ) |
| 21 |
|
elioore |
⊢ ( 𝑥 ∈ ( 𝐴 (,) +∞ ) → 𝑥 ∈ ℝ ) |
| 22 |
21
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ℝ ) |
| 23 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ( 𝐴 (,) +∞ ) ) |
| 24 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 25 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 26 |
|
elioo2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ) ) |
| 27 |
24 25 26
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ) ) |
| 28 |
23 27
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 29 |
28
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝐴 < 𝑥 ) |
| 30 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ≤ 𝐵 ) |
| 31 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 32 |
|
elioc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 33 |
24 31 32
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 34 |
22 29 30 33
|
mpbir3and |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) |
| 35 |
34
|
orcd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 36 |
21
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ℝ ) |
| 37 |
|
3mix3 |
⊢ ( ¬ 𝑥 ≤ 𝐵 → ( ¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ 𝐵 ) ) |
| 38 |
|
3ianor |
⊢ ( ¬ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ↔ ( ¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ 𝐵 ) ) |
| 39 |
37 38
|
sylibr |
⊢ ( ¬ 𝑥 ≤ 𝐵 → ¬ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → ¬ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 41 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) |
| 42 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 43 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 44 |
41 42 43
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 45 |
40 44
|
mtbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 46 |
36 45
|
eldifd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) |
| 47 |
46
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 48 |
35 47
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 49 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ↔ ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 50 |
48 49
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) → 𝑥 ∈ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 51 |
50
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) +∞ ) 𝑥 ∈ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 52 |
|
dfss3 |
⊢ ( ( 𝐴 (,) +∞ ) ⊆ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ↔ ∀ 𝑥 ∈ ( 𝐴 (,) +∞ ) 𝑥 ∈ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 53 |
51 52
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 (,) +∞ ) ⊆ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 54 |
|
eqid |
⊢ ∪ ( topGen ‘ ran (,) ) = ∪ ( topGen ‘ ran (,) ) |
| 55 |
54
|
ntrss |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ∪ ( topGen ‘ ran (,) ) ∧ ( 𝐴 (,) +∞ ) ⊆ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) +∞ ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 56 |
13 20 53 55
|
syl3anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) +∞ ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 57 |
25
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 58 |
2
|
ltpnfd |
⊢ ( 𝜑 → 𝐵 < +∞ ) |
| 59 |
14 57 2 3 58
|
eliood |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 (,) +∞ ) ) |
| 60 |
|
iooretop |
⊢ ( 𝐴 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) |
| 61 |
|
isopn3i |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) +∞ ) ) = ( 𝐴 (,) +∞ ) ) |
| 62 |
13 60 61
|
sylancl |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) +∞ ) ) = ( 𝐴 (,) +∞ ) ) |
| 63 |
59 62
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) +∞ ) ) ) |
| 64 |
56 63
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 65 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 66 |
1 2 3
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 67 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 68 |
14 65 66 67
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 69 |
64 68
|
elind |
⊢ ( 𝜑 → 𝐵 ∈ ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 70 |
|
iocssicc |
⊢ ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 71 |
70
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 72 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) |
| 73 |
19 72
|
restntr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 74 |
13 7 71 73
|
syl3anc |
⊢ ( 𝜑 → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 75 |
69 74
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) ) |
| 76 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
| 77 |
10 76
|
rerest |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 78 |
7 77
|
syl |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 79 |
78
|
eqcomd |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 80 |
79
|
fveq2d |
⊢ ( 𝜑 → ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
| 81 |
80
|
fveq1d |
⊢ ( 𝜑 → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) ) |
| 82 |
75 81
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) ) |
| 83 |
68
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 84 |
|
ssequn2 |
⊢ ( { 𝐵 } ⊆ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 85 |
83 84
|
sylib |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 86 |
85
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) |
| 87 |
86
|
oveq2d |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 88 |
87
|
fveq2d |
⊢ ( 𝜑 → ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) ) ) |
| 89 |
|
ioounsn |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
| 90 |
14 65 3 89
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
| 91 |
90
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 92 |
88 91
|
fveq12d |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 93 |
82 92
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 94 |
4 6 9 10 11 93
|
limcres |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) = ( 𝐹 limℂ 𝐵 ) ) |