| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcicciooub.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
limcicciooub.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
limcicciooub.3 |
|- ( ph -> A < B ) |
| 4 |
|
limcicciooub.4 |
|- ( ph -> F : ( A [,] B ) --> CC ) |
| 5 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 6 |
5
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
| 7 |
1 2
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 8 |
|
ax-resscn |
|- RR C_ CC |
| 9 |
7 8
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
| 10 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 11 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { B } ) ) |
| 12 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 13 |
12
|
a1i |
|- ( ph -> ( topGen ` ran (,) ) e. Top ) |
| 14 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 15 |
|
iocssre |
|- ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) |
| 16 |
14 2 15
|
syl2anc |
|- ( ph -> ( A (,] B ) C_ RR ) |
| 17 |
|
difssd |
|- ( ph -> ( RR \ ( A [,] B ) ) C_ RR ) |
| 18 |
16 17
|
unssd |
|- ( ph -> ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) C_ RR ) |
| 19 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 20 |
18 19
|
sseqtrdi |
|- ( ph -> ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) C_ U. ( topGen ` ran (,) ) ) |
| 21 |
|
elioore |
|- ( x e. ( A (,) +oo ) -> x e. RR ) |
| 22 |
21
|
ad2antlr |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ x <_ B ) -> x e. RR ) |
| 23 |
|
simplr |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ x <_ B ) -> x e. ( A (,) +oo ) ) |
| 24 |
14
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ x <_ B ) -> A e. RR* ) |
| 25 |
|
pnfxr |
|- +oo e. RR* |
| 26 |
|
elioo2 |
|- ( ( A e. RR* /\ +oo e. RR* ) -> ( x e. ( A (,) +oo ) <-> ( x e. RR /\ A < x /\ x < +oo ) ) ) |
| 27 |
24 25 26
|
sylancl |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ x <_ B ) -> ( x e. ( A (,) +oo ) <-> ( x e. RR /\ A < x /\ x < +oo ) ) ) |
| 28 |
23 27
|
mpbid |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ x <_ B ) -> ( x e. RR /\ A < x /\ x < +oo ) ) |
| 29 |
28
|
simp2d |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ x <_ B ) -> A < x ) |
| 30 |
|
simpr |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ x <_ B ) -> x <_ B ) |
| 31 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ x <_ B ) -> B e. RR ) |
| 32 |
|
elioc2 |
|- ( ( A e. RR* /\ B e. RR ) -> ( x e. ( A (,] B ) <-> ( x e. RR /\ A < x /\ x <_ B ) ) ) |
| 33 |
24 31 32
|
syl2anc |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ x <_ B ) -> ( x e. ( A (,] B ) <-> ( x e. RR /\ A < x /\ x <_ B ) ) ) |
| 34 |
22 29 30 33
|
mpbir3and |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ x <_ B ) -> x e. ( A (,] B ) ) |
| 35 |
34
|
orcd |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ x <_ B ) -> ( x e. ( A (,] B ) \/ x e. ( RR \ ( A [,] B ) ) ) ) |
| 36 |
21
|
ad2antlr |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ -. x <_ B ) -> x e. RR ) |
| 37 |
|
3mix3 |
|- ( -. x <_ B -> ( -. x e. RR \/ -. A <_ x \/ -. x <_ B ) ) |
| 38 |
|
3ianor |
|- ( -. ( x e. RR /\ A <_ x /\ x <_ B ) <-> ( -. x e. RR \/ -. A <_ x \/ -. x <_ B ) ) |
| 39 |
37 38
|
sylibr |
|- ( -. x <_ B -> -. ( x e. RR /\ A <_ x /\ x <_ B ) ) |
| 40 |
39
|
adantl |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ -. x <_ B ) -> -. ( x e. RR /\ A <_ x /\ x <_ B ) ) |
| 41 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ -. x <_ B ) -> A e. RR ) |
| 42 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ -. x <_ B ) -> B e. RR ) |
| 43 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 44 |
41 42 43
|
syl2anc |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ -. x <_ B ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 45 |
40 44
|
mtbird |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ -. x <_ B ) -> -. x e. ( A [,] B ) ) |
| 46 |
36 45
|
eldifd |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ -. x <_ B ) -> x e. ( RR \ ( A [,] B ) ) ) |
| 47 |
46
|
olcd |
|- ( ( ( ph /\ x e. ( A (,) +oo ) ) /\ -. x <_ B ) -> ( x e. ( A (,] B ) \/ x e. ( RR \ ( A [,] B ) ) ) ) |
| 48 |
35 47
|
pm2.61dan |
|- ( ( ph /\ x e. ( A (,) +oo ) ) -> ( x e. ( A (,] B ) \/ x e. ( RR \ ( A [,] B ) ) ) ) |
| 49 |
|
elun |
|- ( x e. ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) <-> ( x e. ( A (,] B ) \/ x e. ( RR \ ( A [,] B ) ) ) ) |
| 50 |
48 49
|
sylibr |
|- ( ( ph /\ x e. ( A (,) +oo ) ) -> x e. ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) ) |
| 51 |
50
|
ralrimiva |
|- ( ph -> A. x e. ( A (,) +oo ) x e. ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) ) |
| 52 |
|
dfss3 |
|- ( ( A (,) +oo ) C_ ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) <-> A. x e. ( A (,) +oo ) x e. ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) ) |
| 53 |
51 52
|
sylibr |
|- ( ph -> ( A (,) +oo ) C_ ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) ) |
| 54 |
|
eqid |
|- U. ( topGen ` ran (,) ) = U. ( topGen ` ran (,) ) |
| 55 |
54
|
ntrss |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) C_ U. ( topGen ` ran (,) ) /\ ( A (,) +oo ) C_ ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) +oo ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
| 56 |
13 20 53 55
|
syl3anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) +oo ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
| 57 |
25
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 58 |
2
|
ltpnfd |
|- ( ph -> B < +oo ) |
| 59 |
14 57 2 3 58
|
eliood |
|- ( ph -> B e. ( A (,) +oo ) ) |
| 60 |
|
iooretop |
|- ( A (,) +oo ) e. ( topGen ` ran (,) ) |
| 61 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A (,) +oo ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) +oo ) ) = ( A (,) +oo ) ) |
| 62 |
13 60 61
|
sylancl |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) +oo ) ) = ( A (,) +oo ) ) |
| 63 |
59 62
|
eleqtrrd |
|- ( ph -> B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) +oo ) ) ) |
| 64 |
56 63
|
sseldd |
|- ( ph -> B e. ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
| 65 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 66 |
1 2 3
|
ltled |
|- ( ph -> A <_ B ) |
| 67 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
| 68 |
14 65 66 67
|
syl3anc |
|- ( ph -> B e. ( A [,] B ) ) |
| 69 |
64 68
|
elind |
|- ( ph -> B e. ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
| 70 |
|
iocssicc |
|- ( A (,] B ) C_ ( A [,] B ) |
| 71 |
70
|
a1i |
|- ( ph -> ( A (,] B ) C_ ( A [,] B ) ) |
| 72 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) |
| 73 |
19 72
|
restntr |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR /\ ( A (,] B ) C_ ( A [,] B ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,] B ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
| 74 |
13 7 71 73
|
syl3anc |
|- ( ph -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,] B ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,] B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
| 75 |
69 74
|
eleqtrrd |
|- ( ph -> B e. ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,] B ) ) ) |
| 76 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 77 |
10 76
|
rerest |
|- ( ( A [,] B ) C_ RR -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 78 |
7 77
|
syl |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 79 |
78
|
eqcomd |
|- ( ph -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
| 80 |
79
|
fveq2d |
|- ( ph -> ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ) |
| 81 |
80
|
fveq1d |
|- ( ph -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,] B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,] B ) ) ) |
| 82 |
75 81
|
eleqtrd |
|- ( ph -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,] B ) ) ) |
| 83 |
68
|
snssd |
|- ( ph -> { B } C_ ( A [,] B ) ) |
| 84 |
|
ssequn2 |
|- ( { B } C_ ( A [,] B ) <-> ( ( A [,] B ) u. { B } ) = ( A [,] B ) ) |
| 85 |
83 84
|
sylib |
|- ( ph -> ( ( A [,] B ) u. { B } ) = ( A [,] B ) ) |
| 86 |
85
|
eqcomd |
|- ( ph -> ( A [,] B ) = ( ( A [,] B ) u. { B } ) ) |
| 87 |
86
|
oveq2d |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { B } ) ) ) |
| 88 |
87
|
fveq2d |
|- ( ph -> ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { B } ) ) ) ) |
| 89 |
|
ioounsn |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
| 90 |
14 65 3 89
|
syl3anc |
|- ( ph -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
| 91 |
90
|
eqcomd |
|- ( ph -> ( A (,] B ) = ( ( A (,) B ) u. { B } ) ) |
| 92 |
88 91
|
fveq12d |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,] B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { B } ) ) ) ` ( ( A (,) B ) u. { B } ) ) ) |
| 93 |
82 92
|
eleqtrd |
|- ( ph -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { B } ) ) ) ` ( ( A (,) B ) u. { B } ) ) ) |
| 94 |
4 6 9 10 11 93
|
limcres |
|- ( ph -> ( ( F |` ( A (,) B ) ) limCC B ) = ( F limCC B ) ) |