| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem69.p |
|
| 2 |
|
fourierdlem69.m |
|
| 3 |
|
fourierdlem69.q |
|
| 4 |
|
fourierdlem69.f |
|
| 5 |
|
fourierdlem69.fcn |
|
| 6 |
|
fourierdlem69.r |
|
| 7 |
|
fourierdlem69.l |
|
| 8 |
1
|
fourierdlem2 |
|
| 9 |
2 8
|
syl |
|
| 10 |
3 9
|
mpbid |
|
| 11 |
10
|
simprd |
|
| 12 |
11
|
simpld |
|
| 13 |
12
|
simpld |
|
| 14 |
12
|
simprd |
|
| 15 |
13 14
|
oveq12d |
|
| 16 |
15
|
feq2d |
|
| 17 |
4 16
|
mpbird |
|
| 18 |
17
|
feqmptd |
|
| 19 |
|
nfv |
|
| 20 |
|
0zd |
|
| 21 |
|
nnuz |
|
| 22 |
|
1e0p1 |
|
| 23 |
22
|
fveq2i |
|
| 24 |
21 23
|
eqtri |
|
| 25 |
2 24
|
eleqtrdi |
|
| 26 |
10
|
simpld |
|
| 27 |
|
elmapi |
|
| 28 |
26 27
|
syl |
|
| 29 |
28
|
ffvelcdmda |
|
| 30 |
11
|
simprd |
|
| 31 |
30
|
r19.21bi |
|
| 32 |
4
|
adantr |
|
| 33 |
|
simpr |
|
| 34 |
13
|
adantr |
|
| 35 |
14
|
adantr |
|
| 36 |
34 35
|
oveq12d |
|
| 37 |
33 36
|
eleqtrd |
|
| 38 |
32 37
|
ffvelcdmd |
|
| 39 |
28
|
adantr |
|
| 40 |
|
elfzofz |
|
| 41 |
40
|
adantl |
|
| 42 |
39 41
|
ffvelcdmd |
|
| 43 |
|
fzofzp1 |
|
| 44 |
43
|
adantl |
|
| 45 |
39 44
|
ffvelcdmd |
|
| 46 |
4
|
adantr |
|
| 47 |
|
ioossicc |
|
| 48 |
1 2 3
|
fourierdlem11 |
|
| 49 |
48
|
simp1d |
|
| 50 |
49
|
rexrd |
|
| 51 |
50
|
adantr |
|
| 52 |
48
|
simp2d |
|
| 53 |
52
|
rexrd |
|
| 54 |
53
|
adantr |
|
| 55 |
1 2 3
|
fourierdlem15 |
|
| 56 |
55
|
adantr |
|
| 57 |
|
simpr |
|
| 58 |
51 54 56 57
|
fourierdlem8 |
|
| 59 |
47 58
|
sstrid |
|
| 60 |
46 59
|
feqresmpt |
|
| 61 |
60 5
|
eqeltrrd |
|
| 62 |
60
|
oveq1d |
|
| 63 |
7 62
|
eleqtrd |
|
| 64 |
60
|
oveq1d |
|
| 65 |
6 64
|
eleqtrd |
|
| 66 |
42 45 61 63 65
|
iblcncfioo |
|
| 67 |
46
|
adantr |
|
| 68 |
58
|
sselda |
|
| 69 |
67 68
|
ffvelcdmd |
|
| 70 |
42 45 66 69
|
ibliooicc |
|
| 71 |
19 20 25 29 31 38 70
|
iblspltprt |
|
| 72 |
18 71
|
eqeltrd |
|