| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem70.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
fourierdlem70.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
fourierdlem70.aleb |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 4 |
|
fourierdlem70.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 5 |
|
fourierdlem70.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 6 |
|
fourierdlem70.q |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 7 |
|
fourierdlem70.q0 |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
| 8 |
|
fourierdlem70.qm |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
| 9 |
|
fourierdlem70.qlt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 10 |
|
fourierdlem70.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 11 |
|
fourierdlem70.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 12 |
|
fourierdlem70.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 13 |
|
fourierdlem70.i |
⊢ 𝐼 = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 14 |
|
prfi |
⊢ { ran 𝑄 , ∪ ran 𝐼 } ∈ Fin |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → { ran 𝑄 , ∪ ran 𝐼 } ∈ Fin ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) |
| 17 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
| 18 |
|
fex |
⊢ ( ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ∧ ( 0 ... 𝑀 ) ∈ V ) → 𝑄 ∈ V ) |
| 19 |
6 17 18
|
sylancl |
⊢ ( 𝜑 → 𝑄 ∈ V ) |
| 20 |
|
rnexg |
⊢ ( 𝑄 ∈ V → ran 𝑄 ∈ V ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → ran 𝑄 ∈ V ) |
| 22 |
|
fzofi |
⊢ ( 0 ..^ 𝑀 ) ∈ Fin |
| 23 |
13
|
rnmptfi |
⊢ ( ( 0 ..^ 𝑀 ) ∈ Fin → ran 𝐼 ∈ Fin ) |
| 24 |
22 23
|
ax-mp |
⊢ ran 𝐼 ∈ Fin |
| 25 |
24
|
elexi |
⊢ ran 𝐼 ∈ V |
| 26 |
25
|
uniex |
⊢ ∪ ran 𝐼 ∈ V |
| 27 |
|
uniprg |
⊢ ( ( ran 𝑄 ∈ V ∧ ∪ ran 𝐼 ∈ V ) → ∪ { ran 𝑄 , ∪ ran 𝐼 } = ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
| 28 |
21 26 27
|
sylancl |
⊢ ( 𝜑 → ∪ { ran 𝑄 , ∪ ran 𝐼 } = ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → ∪ { ran 𝑄 , ∪ ran 𝐼 } = ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
| 30 |
16 29
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
| 31 |
|
eqid |
⊢ ( 𝑦 ∈ ℕ ↦ { 𝑣 ∈ ( ℝ ↑m ( 0 ... 𝑦 ) ) ∣ ( ( ( 𝑣 ‘ 0 ) = 𝐴 ∧ ( 𝑣 ‘ 𝑦 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑦 ) ( 𝑣 ‘ 𝑖 ) < ( 𝑣 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑦 ∈ ℕ ↦ { 𝑣 ∈ ( ℝ ↑m ( 0 ... 𝑦 ) ) ∣ ( ( ( 𝑣 ‘ 0 ) = 𝐴 ∧ ( 𝑣 ‘ 𝑦 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑦 ) ( 𝑣 ‘ 𝑖 ) < ( 𝑣 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 32 |
|
reex |
⊢ ℝ ∈ V |
| 33 |
32 17
|
elmap |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 34 |
6 33
|
sylibr |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
| 35 |
7 8
|
jca |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ) |
| 36 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 37 |
34 35 36
|
jca32 |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 38 |
31
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( ( 𝑦 ∈ ℕ ↦ { 𝑣 ∈ ( ℝ ↑m ( 0 ... 𝑦 ) ) ∣ ( ( ( 𝑣 ‘ 0 ) = 𝐴 ∧ ( 𝑣 ‘ 𝑦 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑦 ) ( 𝑣 ‘ 𝑖 ) < ( 𝑣 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 39 |
5 38
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ( 𝑦 ∈ ℕ ↦ { 𝑣 ∈ ( ℝ ↑m ( 0 ... 𝑦 ) ) ∣ ( ( ( 𝑣 ‘ 0 ) = 𝐴 ∧ ( 𝑣 ‘ 𝑦 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑦 ) ( 𝑣 ‘ 𝑖 ) < ( 𝑣 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 40 |
37 39
|
mpbird |
⊢ ( 𝜑 → 𝑄 ∈ ( ( 𝑦 ∈ ℕ ↦ { 𝑣 ∈ ( ℝ ↑m ( 0 ... 𝑦 ) ) ∣ ( ( ( 𝑣 ‘ 0 ) = 𝐴 ∧ ( 𝑣 ‘ 𝑦 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑦 ) ( 𝑣 ‘ 𝑖 ) < ( 𝑣 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑀 ) ) |
| 41 |
31 5 40
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 42 |
41
|
frnd |
⊢ ( 𝜑 → ran 𝑄 ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 43 |
42
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ran 𝑄 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 44 |
43
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) ∧ 𝑠 ∈ ran 𝑄 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 45 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) ∧ ¬ 𝑠 ∈ ran 𝑄 ) → 𝜑 ) |
| 46 |
|
elunnel1 |
⊢ ( ( 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ∧ ¬ 𝑠 ∈ ran 𝑄 ) → 𝑠 ∈ ∪ ran 𝐼 ) |
| 47 |
46
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) ∧ ¬ 𝑠 ∈ ran 𝑄 ) → 𝑠 ∈ ∪ ran 𝐼 ) |
| 48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran 𝐼 ) → 𝑠 ∈ ∪ ran 𝐼 ) |
| 49 |
13
|
funmpt2 |
⊢ Fun 𝐼 |
| 50 |
|
elunirn |
⊢ ( Fun 𝐼 → ( 𝑠 ∈ ∪ ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 51 |
49 50
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran 𝐼 ) → ( 𝑠 ∈ ∪ ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 52 |
48 51
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran 𝐼 ) → ∃ 𝑖 ∈ dom 𝐼 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) |
| 53 |
|
id |
⊢ ( 𝑖 ∈ dom 𝐼 → 𝑖 ∈ dom 𝐼 ) |
| 54 |
|
ovex |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ V |
| 55 |
54 13
|
dmmpti |
⊢ dom 𝐼 = ( 0 ..^ 𝑀 ) |
| 56 |
53 55
|
eleqtrdi |
⊢ ( 𝑖 ∈ dom 𝐼 → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 57 |
13
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ V ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 58 |
56 54 57
|
sylancl |
⊢ ( 𝑖 ∈ dom 𝐼 → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 60 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 61 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → 𝐴 ∈ ℝ* ) |
| 63 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → 𝐵 ∈ ℝ* ) |
| 65 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 66 |
56
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 67 |
62 64 65 66
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 68 |
60 67
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 69 |
59 68
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑖 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 70 |
69
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) → ( 𝐼 ‘ 𝑖 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 71 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) → 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) |
| 72 |
70 71
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 73 |
72
|
3exp |
⊢ ( 𝜑 → ( 𝑖 ∈ dom 𝐼 → ( 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran 𝐼 ) → ( 𝑖 ∈ dom 𝐼 → ( 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 75 |
74
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran 𝐼 ) → ( ∃ 𝑖 ∈ dom 𝐼 𝑠 ∈ ( 𝐼 ‘ 𝑖 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 76 |
52 75
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ ran 𝐼 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 77 |
45 47 76
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) ∧ ¬ 𝑠 ∈ ran 𝑄 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 78 |
44 77
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 79 |
30 78
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 80 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑠 ) ∈ ℝ ) |
| 81 |
79 80
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → ( 𝐹 ‘ 𝑠 ) ∈ ℝ ) |
| 82 |
81
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → ( 𝐹 ‘ 𝑠 ) ∈ ℂ ) |
| 83 |
82
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) → ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ∈ ℝ ) |
| 84 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) → 𝑤 = ran 𝑄 ) |
| 85 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 86 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) → ( 0 ... 𝑀 ) ∈ Fin ) |
| 87 |
|
rnffi |
⊢ ( ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ∧ ( 0 ... 𝑀 ) ∈ Fin ) → ran 𝑄 ∈ Fin ) |
| 88 |
85 86 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) → ran 𝑄 ∈ Fin ) |
| 89 |
84 88
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) → 𝑤 ∈ Fin ) |
| 90 |
89
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) ∧ 𝑤 = ran 𝑄 ) → 𝑤 ∈ Fin ) |
| 91 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 92 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → 𝜑 ) |
| 93 |
|
simpr |
⊢ ( ( 𝑤 = ran 𝑄 ∧ 𝑠 ∈ 𝑤 ) → 𝑠 ∈ 𝑤 ) |
| 94 |
|
simpl |
⊢ ( ( 𝑤 = ran 𝑄 ∧ 𝑠 ∈ 𝑤 ) → 𝑤 = ran 𝑄 ) |
| 95 |
93 94
|
eleqtrd |
⊢ ( ( 𝑤 = ran 𝑄 ∧ 𝑠 ∈ 𝑤 ) → 𝑠 ∈ ran 𝑄 ) |
| 96 |
95
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → 𝑠 ∈ ran 𝑄 ) |
| 97 |
92 96 43
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 98 |
91 97
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → ( 𝐹 ‘ 𝑠 ) ∈ ℝ ) |
| 99 |
98
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → ( 𝐹 ‘ 𝑠 ) ∈ ℂ ) |
| 100 |
99
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) ∧ 𝑠 ∈ 𝑤 ) → ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ∈ ℝ ) |
| 101 |
100
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑤 = ran 𝑄 ) → ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ∈ ℝ ) |
| 102 |
101
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) ∧ 𝑤 = ran 𝑄 ) → ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ∈ ℝ ) |
| 103 |
|
fimaxre3 |
⊢ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ∈ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑧 ) |
| 104 |
90 102 103
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) ∧ 𝑤 = ran 𝑄 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑧 ) |
| 105 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) ∧ ¬ 𝑤 = ran 𝑄 ) → 𝜑 ) |
| 106 |
|
neqne |
⊢ ( ¬ 𝑤 = ran 𝑄 → 𝑤 ≠ ran 𝑄 ) |
| 107 |
|
elprn1 |
⊢ ( ( 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ∧ 𝑤 ≠ ran 𝑄 ) → 𝑤 = ∪ ran 𝐼 ) |
| 108 |
106 107
|
sylan2 |
⊢ ( ( 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ∧ ¬ 𝑤 = ran 𝑄 ) → 𝑤 = ∪ ran 𝐼 ) |
| 109 |
108
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) ∧ ¬ 𝑤 = ran 𝑄 ) → 𝑤 = ∪ ran 𝐼 ) |
| 110 |
22 23
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) → ran 𝐼 ∈ Fin ) |
| 111 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 112 |
111
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 113 |
4 112
|
fssd |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 114 |
113
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑠 ∈ ∪ ran 𝐼 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 115 |
76
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑠 ∈ ∪ ran 𝐼 ) → 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 116 |
114 115
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑠 ∈ ∪ ran 𝐼 ) → ( 𝐹 ‘ 𝑠 ) ∈ ℂ ) |
| 117 |
116
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑠 ∈ ∪ ran 𝐼 ) → ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ∈ ℝ ) |
| 118 |
54 13
|
fnmpti |
⊢ 𝐼 Fn ( 0 ..^ 𝑀 ) |
| 119 |
|
fvelrnb |
⊢ ( 𝐼 Fn ( 0 ..^ 𝑀 ) → ( 𝑡 ∈ ran 𝐼 ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) ) |
| 120 |
118 119
|
ax-mp |
⊢ ( 𝑡 ∈ ran 𝐼 ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
| 121 |
120
|
biimpi |
⊢ ( 𝑡 ∈ ran 𝐼 → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
| 122 |
121
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
| 123 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 124 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 126 |
123 125
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 127 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 128 |
127
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 129 |
123 128
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 130 |
126 129 10 12 11
|
cncfioobd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ≤ 𝑏 ) |
| 131 |
|
fvres |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) = ( 𝐹 ‘ 𝑠 ) ) |
| 132 |
131
|
fveq2d |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ) |
| 133 |
132
|
breq1d |
⊢ ( 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
| 134 |
133
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
| 135 |
134
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ≤ 𝑏 ↔ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
| 136 |
135
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑠 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
| 137 |
130 136
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) |
| 138 |
137
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) |
| 139 |
54 57
|
mpan2 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 140 |
139
|
eqcomd |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐼 ‘ 𝑖 ) ) |
| 141 |
140
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐼 ‘ 𝑖 ) ) |
| 142 |
|
simpr |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
| 143 |
141 142
|
eqtrd |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = 𝑡 ) |
| 144 |
143
|
raleqdv |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ↔ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
| 145 |
144
|
rexbidv |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
| 146 |
145
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
| 147 |
138 146
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) |
| 148 |
147
|
3exp |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝐼 ‘ 𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) ) |
| 149 |
148
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝐼 ‘ 𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) ) |
| 150 |
149
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) ) |
| 151 |
122 150
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) |
| 152 |
151
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑠 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑏 ) |
| 153 |
|
eqimss |
⊢ ( 𝑤 = ∪ ran 𝐼 → 𝑤 ⊆ ∪ ran 𝐼 ) |
| 154 |
153
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) → 𝑤 ⊆ ∪ ran 𝐼 ) |
| 155 |
110 117 152 154
|
ssfiunibd |
⊢ ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑧 ) |
| 156 |
105 109 155
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) ∧ ¬ 𝑤 = ran 𝑄 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑧 ) |
| 157 |
104 156
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ { ran 𝑄 , ∪ ran 𝐼 } ) → ∃ 𝑧 ∈ ℝ ∀ 𝑠 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑧 ) |
| 158 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → 𝑀 ∈ ℕ ) |
| 159 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 160 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 161 |
7
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝑄 ‘ 0 ) ) |
| 162 |
8
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = ( 𝑄 ‘ 𝑀 ) ) |
| 163 |
161 162
|
oveq12d |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
| 164 |
163
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
| 165 |
160 164
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑡 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
| 166 |
165
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → 𝑡 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
| 167 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → ¬ 𝑡 ∈ ran 𝑄 ) |
| 168 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 𝑗 ) ) |
| 169 |
168
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑄 ‘ 𝑘 ) < 𝑡 ↔ ( 𝑄 ‘ 𝑗 ) < 𝑡 ) ) |
| 170 |
169
|
cbvrabv |
⊢ { 𝑘 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑘 ) < 𝑡 } = { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) < 𝑡 } |
| 171 |
170
|
supeq1i |
⊢ sup ( { 𝑘 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑘 ) < 𝑡 } , ℝ , < ) = sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) < 𝑡 } , ℝ , < ) |
| 172 |
158 159 166 167 171
|
fourierdlem25 |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 173 |
139
|
eleq2d |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ↔ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 174 |
173
|
rexbiia |
⊢ ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 175 |
172 174
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ) |
| 176 |
55
|
eqcomi |
⊢ ( 0 ..^ 𝑀 ) = dom 𝐼 |
| 177 |
176
|
rexeqi |
⊢ ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ dom 𝐼 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ) |
| 178 |
175 177
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → ∃ 𝑖 ∈ dom 𝐼 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ) |
| 179 |
|
elunirn |
⊢ ( Fun 𝐼 → ( 𝑡 ∈ ∪ ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 180 |
49 179
|
mp1i |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → ( 𝑡 ∈ ∪ ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑡 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 181 |
178 180
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑡 ∈ ran 𝑄 ) → 𝑡 ∈ ∪ ran 𝐼 ) |
| 182 |
181
|
ex |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ¬ 𝑡 ∈ ran 𝑄 → 𝑡 ∈ ∪ ran 𝐼 ) ) |
| 183 |
182
|
orrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ ran 𝑄 ∨ 𝑡 ∈ ∪ ran 𝐼 ) ) |
| 184 |
|
elun |
⊢ ( 𝑡 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ↔ ( 𝑡 ∈ ran 𝑄 ∨ 𝑡 ∈ ∪ ran 𝐼 ) ) |
| 185 |
183 184
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑡 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
| 186 |
185
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) 𝑡 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
| 187 |
|
dfss3 |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ↔ ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) 𝑡 ∈ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
| 188 |
186 187
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( ran 𝑄 ∪ ∪ ran 𝐼 ) ) |
| 189 |
188 28
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ { ran 𝑄 , ∪ ran 𝐼 } ) |
| 190 |
15 83 157 189
|
ssfiunibd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑠 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑠 ) ) ≤ 𝑥 ) |