| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cncfioobd.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
cncfioobd.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
cncfioobd.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 4 |
|
cncfioobd.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 5 |
|
cncfioobd.r |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
| 7 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 8 |
6 7 1 2 3 4 5
|
cncfiooicc |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 9 |
|
cniccbdd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) |
| 10 |
1 2 8 9
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 ∈ ℝ ) |
| 12 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 |
| 13 |
11 12
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 15 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 16 |
3 15
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 17 |
16
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ( 𝐴 (,) 𝐵 ) ) |
| 18 |
17
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) = dom 𝐹 ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) = dom 𝐹 ) |
| 20 |
14 19
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ dom 𝐹 ) |
| 21 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → 𝐴 ∈ ℝ ) |
| 22 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → 𝐵 ∈ ℝ ) |
| 23 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → 𝑦 ∈ dom 𝐹 ) |
| 25 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → dom 𝐹 = ( 𝐴 (,) 𝐵 ) ) |
| 26 |
24 25
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 27 |
21 22 23 7 26
|
cncfioobdlem |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 28 |
20 27
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 29 |
28
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) = ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) |
| 30 |
29
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) = ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ) |
| 31 |
30
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) = ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ) |
| 32 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) |
| 33 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 34 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 35 |
33 34
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 36 |
|
rspa |
⊢ ( ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) |
| 37 |
32 35 36
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) |
| 38 |
31 37
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
| 39 |
38
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) |
| 40 |
13 39
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 ) → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
| 41 |
40
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) |
| 42 |
41
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑧 = 𝐴 , 𝑅 , if ( 𝑧 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝑦 ) ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) |
| 43 |
10 42
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |