Metamath Proof Explorer


Theorem fourierdlem71

Description: A periodic piecewise continuous function, possibly undefined on a finite set in each periodic interval, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem71.dmf ( 𝜑 → dom 𝐹 ⊆ ℝ )
fourierdlem71.f ( 𝜑𝐹 : dom 𝐹 ⟶ ℝ )
fourierdlem71.a ( 𝜑𝐴 ∈ ℝ )
fourierdlem71.b ( 𝜑𝐵 ∈ ℝ )
fourierdlem71.altb ( 𝜑𝐴 < 𝐵 )
fourierdlem71.t 𝑇 = ( 𝐵𝐴 )
fourierdlem71.7 ( 𝜑𝑀 ∈ ℕ )
fourierdlem71.q ( 𝜑𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
fourierdlem71.q0 ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 )
fourierdlem71.10 ( 𝜑 → ( 𝑄𝑀 ) = 𝐵 )
fourierdlem71.fcn ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) )
fourierdlem71.r ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄𝑖 ) ) )
fourierdlem71.l ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
fourierdlem71.xpt ( ( ( 𝜑𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ dom 𝐹 )
fourierdlem71.fxpt ( ( ( 𝜑𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹𝑥 ) )
fourierdlem71.i 𝐼 = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
fourierdlem71.e 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) )
Assertion fourierdlem71 ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 )

Proof

Step Hyp Ref Expression
1 fourierdlem71.dmf ( 𝜑 → dom 𝐹 ⊆ ℝ )
2 fourierdlem71.f ( 𝜑𝐹 : dom 𝐹 ⟶ ℝ )
3 fourierdlem71.a ( 𝜑𝐴 ∈ ℝ )
4 fourierdlem71.b ( 𝜑𝐵 ∈ ℝ )
5 fourierdlem71.altb ( 𝜑𝐴 < 𝐵 )
6 fourierdlem71.t 𝑇 = ( 𝐵𝐴 )
7 fourierdlem71.7 ( 𝜑𝑀 ∈ ℕ )
8 fourierdlem71.q ( 𝜑𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
9 fourierdlem71.q0 ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 )
10 fourierdlem71.10 ( 𝜑 → ( 𝑄𝑀 ) = 𝐵 )
11 fourierdlem71.fcn ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) )
12 fourierdlem71.r ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄𝑖 ) ) )
13 fourierdlem71.l ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) lim ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
14 fourierdlem71.xpt ( ( ( 𝜑𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ dom 𝐹 )
15 fourierdlem71.fxpt ( ( ( 𝜑𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹𝑥 ) )
16 fourierdlem71.i 𝐼 = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
17 fourierdlem71.e 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) )
18 prfi { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ∈ Fin
19 18 a1i ( 𝜑 → { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ∈ Fin )
20 2 adantr ( ( 𝜑𝑥 { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) → 𝐹 : dom 𝐹 ⟶ ℝ )
21 simpl ( ( 𝜑𝑥 { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) → 𝜑 )
22 simpr ( ( 𝜑𝑥 { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) → 𝑥 { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } )
23 ovex ( 0 ... 𝑀 ) ∈ V
24 23 a1i ( 𝜑 → ( 0 ... 𝑀 ) ∈ V )
25 fex ( ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ∧ ( 0 ... 𝑀 ) ∈ V ) → 𝑄 ∈ V )
26 8 24 25 syl2anc ( 𝜑𝑄 ∈ V )
27 rnexg ( 𝑄 ∈ V → ran 𝑄 ∈ V )
28 inex1g ( ran 𝑄 ∈ V → ( ran 𝑄 ∩ dom 𝐹 ) ∈ V )
29 26 27 28 3syl ( 𝜑 → ( ran 𝑄 ∩ dom 𝐹 ) ∈ V )
30 29 adantr ( ( 𝜑𝑥 { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) → ( ran 𝑄 ∩ dom 𝐹 ) ∈ V )
31 ovex ( 0 ..^ 𝑀 ) ∈ V
32 31 mptex ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ V
33 16 32 eqeltri 𝐼 ∈ V
34 33 rnex ran 𝐼 ∈ V
35 34 a1i ( 𝜑 → ran 𝐼 ∈ V )
36 35 uniexd ( 𝜑 ran 𝐼 ∈ V )
37 36 adantr ( ( 𝜑𝑥 { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) → ran 𝐼 ∈ V )
38 uniprg ( ( ( ran 𝑄 ∩ dom 𝐹 ) ∈ V ∧ ran 𝐼 ∈ V ) → { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } = ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) )
39 30 37 38 syl2anc ( ( 𝜑𝑥 { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) → { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } = ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) )
40 22 39 eleqtrd ( ( 𝜑𝑥 { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) )
41 elinel2 ( 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) → 𝑥 ∈ dom 𝐹 )
42 41 adantl ( ( ( 𝜑𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) ) ∧ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ∈ dom 𝐹 )
43 simpll ( ( ( 𝜑𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) ) ∧ ¬ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝜑 )
44 elunnel1 ( ( 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) ∧ ¬ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ran 𝐼 )
45 44 adantll ( ( ( 𝜑𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) ) ∧ ¬ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ran 𝐼 )
46 16 funmpt2 Fun 𝐼
47 elunirn ( Fun 𝐼 → ( 𝑥 ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼𝑖 ) ) )
48 46 47 ax-mp ( 𝑥 ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼𝑖 ) )
49 48 biimpi ( 𝑥 ran 𝐼 → ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼𝑖 ) )
50 49 adantl ( ( 𝜑𝑥 ran 𝐼 ) → ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼𝑖 ) )
51 id ( 𝑖 ∈ dom 𝐼𝑖 ∈ dom 𝐼 )
52 ovex ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ V
53 52 16 dmmpti dom 𝐼 = ( 0 ..^ 𝑀 )
54 51 53 eleqtrdi ( 𝑖 ∈ dom 𝐼𝑖 ∈ ( 0 ..^ 𝑀 ) )
55 54 adantl ( ( 𝜑𝑖 ∈ dom 𝐼 ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) )
56 52 a1i ( ( 𝜑𝑖 ∈ dom 𝐼 ) → ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ V )
57 16 fvmpt2 ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ V ) → ( 𝐼𝑖 ) = ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
58 55 56 57 syl2anc ( ( 𝜑𝑖 ∈ dom 𝐼 ) → ( 𝐼𝑖 ) = ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
59 cncff ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) → ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ )
60 fdm ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ → dom ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
61 11 59 60 3syl ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
62 54 61 sylan2 ( ( 𝜑𝑖 ∈ dom 𝐼 ) → dom ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
63 ssdmres ( ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
64 62 63 sylibr ( ( 𝜑𝑖 ∈ dom 𝐼 ) → ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 )
65 58 64 eqsstrd ( ( 𝜑𝑖 ∈ dom 𝐼 ) → ( 𝐼𝑖 ) ⊆ dom 𝐹 )
66 65 3adant3 ( ( 𝜑𝑖 ∈ dom 𝐼𝑥 ∈ ( 𝐼𝑖 ) ) → ( 𝐼𝑖 ) ⊆ dom 𝐹 )
67 simp3 ( ( 𝜑𝑖 ∈ dom 𝐼𝑥 ∈ ( 𝐼𝑖 ) ) → 𝑥 ∈ ( 𝐼𝑖 ) )
68 66 67 sseldd ( ( 𝜑𝑖 ∈ dom 𝐼𝑥 ∈ ( 𝐼𝑖 ) ) → 𝑥 ∈ dom 𝐹 )
69 68 3exp ( 𝜑 → ( 𝑖 ∈ dom 𝐼 → ( 𝑥 ∈ ( 𝐼𝑖 ) → 𝑥 ∈ dom 𝐹 ) ) )
70 69 adantr ( ( 𝜑𝑥 ran 𝐼 ) → ( 𝑖 ∈ dom 𝐼 → ( 𝑥 ∈ ( 𝐼𝑖 ) → 𝑥 ∈ dom 𝐹 ) ) )
71 70 rexlimdv ( ( 𝜑𝑥 ran 𝐼 ) → ( ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼𝑖 ) → 𝑥 ∈ dom 𝐹 ) )
72 50 71 mpd ( ( 𝜑𝑥 ran 𝐼 ) → 𝑥 ∈ dom 𝐹 )
73 43 45 72 syl2anc ( ( ( 𝜑𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) ) ∧ ¬ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ∈ dom 𝐹 )
74 42 73 pm2.61dan ( ( 𝜑𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) ) → 𝑥 ∈ dom 𝐹 )
75 21 40 74 syl2anc ( ( 𝜑𝑥 { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) → 𝑥 ∈ dom 𝐹 )
76 20 75 ffvelrnd ( ( 𝜑𝑥 { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) → ( 𝐹𝑥 ) ∈ ℝ )
77 76 recnd ( ( 𝜑𝑥 { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) → ( 𝐹𝑥 ) ∈ ℂ )
78 77 abscld ( ( 𝜑𝑥 { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) → ( abs ‘ ( 𝐹𝑥 ) ) ∈ ℝ )
79 simpr ( ( 𝜑𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) )
80 fzfid ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin )
81 rnffi ( ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ∧ ( 0 ... 𝑀 ) ∈ Fin ) → ran 𝑄 ∈ Fin )
82 8 80 81 syl2anc ( 𝜑 → ran 𝑄 ∈ Fin )
83 infi ( ran 𝑄 ∈ Fin → ( ran 𝑄 ∩ dom 𝐹 ) ∈ Fin )
84 82 83 syl ( 𝜑 → ( ran 𝑄 ∩ dom 𝐹 ) ∈ Fin )
85 84 adantr ( ( 𝜑𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ( ran 𝑄 ∩ dom 𝐹 ) ∈ Fin )
86 79 85 eqeltrd ( ( 𝜑𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 ∈ Fin )
87 simpll ( ( ( 𝜑𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) ∧ 𝑥𝑤 ) → 𝜑 )
88 simpr ( ( 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ∧ 𝑥𝑤 ) → 𝑥𝑤 )
89 simpl ( ( 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ∧ 𝑥𝑤 ) → 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) )
90 88 89 eleqtrd ( ( 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ∧ 𝑥𝑤 ) → 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) )
91 90 adantll ( ( ( 𝜑𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) ∧ 𝑥𝑤 ) → 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) )
92 2 adantr ( ( 𝜑𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝐹 : dom 𝐹 ⟶ ℝ )
93 41 adantl ( ( 𝜑𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ∈ dom 𝐹 )
94 92 93 ffvelrnd ( ( 𝜑𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → ( 𝐹𝑥 ) ∈ ℝ )
95 94 recnd ( ( 𝜑𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → ( 𝐹𝑥 ) ∈ ℂ )
96 95 abscld ( ( 𝜑𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → ( abs ‘ ( 𝐹𝑥 ) ) ∈ ℝ )
97 87 91 96 syl2anc ( ( ( 𝜑𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) ∧ 𝑥𝑤 ) → ( abs ‘ ( 𝐹𝑥 ) ) ∈ ℝ )
98 97 ralrimiva ( ( 𝜑𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ∀ 𝑥𝑤 ( abs ‘ ( 𝐹𝑥 ) ) ∈ ℝ )
99 fimaxre3 ( ( 𝑤 ∈ Fin ∧ ∀ 𝑥𝑤 ( abs ‘ ( 𝐹𝑥 ) ) ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝑤 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 )
100 86 98 99 syl2anc ( ( 𝜑𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝑤 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 )
101 100 adantlr ( ( ( 𝜑𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝑤 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 )
102 simpll ( ( ( 𝜑𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) ∧ ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝜑 )
103 neqne ( ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) → 𝑤 ≠ ( ran 𝑄 ∩ dom 𝐹 ) )
104 elprn1 ( ( 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ∧ 𝑤 ≠ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 = ran 𝐼 )
105 103 104 sylan2 ( ( 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ∧ ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 = ran 𝐼 )
106 105 adantll ( ( ( 𝜑𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) ∧ ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 = ran 𝐼 )
107 fzofi ( 0 ..^ 𝑀 ) ∈ Fin
108 16 rnmptfi ( ( 0 ..^ 𝑀 ) ∈ Fin → ran 𝐼 ∈ Fin )
109 107 108 ax-mp ran 𝐼 ∈ Fin
110 109 a1i ( ( 𝜑𝑤 = ran 𝐼 ) → ran 𝐼 ∈ Fin )
111 2 adantr ( ( 𝜑𝑥 ran 𝐼 ) → 𝐹 : dom 𝐹 ⟶ ℝ )
112 111 72 ffvelrnd ( ( 𝜑𝑥 ran 𝐼 ) → ( 𝐹𝑥 ) ∈ ℝ )
113 112 recnd ( ( 𝜑𝑥 ran 𝐼 ) → ( 𝐹𝑥 ) ∈ ℂ )
114 113 adantlr ( ( ( 𝜑𝑤 = ran 𝐼 ) ∧ 𝑥 ran 𝐼 ) → ( 𝐹𝑥 ) ∈ ℂ )
115 114 abscld ( ( ( 𝜑𝑤 = ran 𝐼 ) ∧ 𝑥 ran 𝐼 ) → ( abs ‘ ( 𝐹𝑥 ) ) ∈ ℝ )
116 52 16 fnmpti 𝐼 Fn ( 0 ..^ 𝑀 )
117 fvelrnb ( 𝐼 Fn ( 0 ..^ 𝑀 ) → ( 𝑡 ∈ ran 𝐼 ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼𝑖 ) = 𝑡 ) )
118 116 117 ax-mp ( 𝑡 ∈ ran 𝐼 ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼𝑖 ) = 𝑡 )
119 118 biimpi ( 𝑡 ∈ ran 𝐼 → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼𝑖 ) = 𝑡 )
120 119 adantl ( ( 𝜑𝑡 ∈ ran 𝐼 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼𝑖 ) = 𝑡 )
121 8 adantr ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
122 elfzofz ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) )
123 122 adantl ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) )
124 121 123 ffvelrnd ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑖 ) ∈ ℝ )
125 fzofzp1 ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) )
126 125 adantl ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) )
127 121 126 ffvelrnd ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ )
128 124 127 11 13 12 cncfioobd ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 )
129 128 3adant3 ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼𝑖 ) = 𝑡 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 )
130 fvres ( 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) = ( 𝐹𝑥 ) )
131 130 fveq2d ( 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹𝑥 ) ) )
132 131 breq1d ( 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 ) )
133 132 adantl ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 ) )
134 133 ralbidva ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∀ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∀ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 ) )
135 134 rexbidv ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 ) )
136 135 3adant3 ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼𝑖 ) = 𝑡 ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 ) )
137 52 57 mpan2 ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼𝑖 ) = ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
138 id ( ( 𝐼𝑖 ) = 𝑡 → ( 𝐼𝑖 ) = 𝑡 )
139 137 138 sylan9req ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼𝑖 ) = 𝑡 ) → ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = 𝑡 )
140 139 3adant1 ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼𝑖 ) = 𝑡 ) → ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = 𝑡 )
141 140 raleqdv ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼𝑖 ) = 𝑡 ) → ( ∀ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 ↔ ∀ 𝑥𝑡 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 ) )
142 141 rexbidv ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼𝑖 ) = 𝑡 ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑥𝑡 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 ) )
143 136 142 bitrd ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼𝑖 ) = 𝑡 ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑥𝑡 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 ) )
144 129 143 mpbid ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼𝑖 ) = 𝑡 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥𝑡 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 )
145 144 3exp ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝐼𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑥𝑡 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 ) ) )
146 145 adantr ( ( 𝜑𝑡 ∈ ran 𝐼 ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝐼𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑥𝑡 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 ) ) )
147 146 rexlimdv ( ( 𝜑𝑡 ∈ ran 𝐼 ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑥𝑡 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 ) )
148 120 147 mpd ( ( 𝜑𝑡 ∈ ran 𝐼 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥𝑡 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 )
149 148 adantlr ( ( ( 𝜑𝑤 = ran 𝐼 ) ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥𝑡 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑏 )
150 eqimss ( 𝑤 = ran 𝐼𝑤 ran 𝐼 )
151 150 adantl ( ( 𝜑𝑤 = ran 𝐼 ) → 𝑤 ran 𝐼 )
152 110 115 149 151 ssfiunibd ( ( 𝜑𝑤 = ran 𝐼 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝑤 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 )
153 102 106 152 syl2anc ( ( ( 𝜑𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) ∧ ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝑤 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 )
154 101 153 pm2.61dan ( ( 𝜑𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥𝑤 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 )
155 simpr ( ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ran 𝑄 )
156 elinel2 ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) → 𝑥 ∈ dom 𝐹 )
157 156 ad2antlr ( ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ dom 𝐹 )
158 155 157 elind ( ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) )
159 elun1 ( 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) )
160 158 159 syl ( ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) )
161 7 ad2antrr ( ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑀 ∈ ℕ )
162 8 ad2antrr ( ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
163 elinel1 ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
164 163 adantl ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) )
165 9 eqcomd ( 𝜑𝐴 = ( 𝑄 ‘ 0 ) )
166 165 adantr ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝐴 = ( 𝑄 ‘ 0 ) )
167 10 eqcomd ( 𝜑𝐵 = ( 𝑄𝑀 ) )
168 167 adantr ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝐵 = ( 𝑄𝑀 ) )
169 166 168 oveq12d ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → ( 𝐴 [,] 𝐵 ) = ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) )
170 164 169 eleqtrd ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) )
171 170 adantr ( ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄𝑀 ) ) )
172 simpr ( ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → ¬ 𝑥 ∈ ran 𝑄 )
173 fveq2 ( 𝑘 = 𝑗 → ( 𝑄𝑘 ) = ( 𝑄𝑗 ) )
174 173 breq1d ( 𝑘 = 𝑗 → ( ( 𝑄𝑘 ) < 𝑥 ↔ ( 𝑄𝑗 ) < 𝑥 ) )
175 174 cbvrabv { 𝑘 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑘 ) < 𝑥 } = { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑗 ) < 𝑥 }
176 175 supeq1i sup ( { 𝑘 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑘 ) < 𝑥 } , ℝ , < ) = sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄𝑗 ) < 𝑥 } , ℝ , < )
177 161 162 171 172 176 fourierdlem25 ( ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
178 54 ad2antrl ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼𝑥 ∈ ( 𝐼𝑖 ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) )
179 simprr ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼𝑥 ∈ ( 𝐼𝑖 ) ) ) → 𝑥 ∈ ( 𝐼𝑖 ) )
180 178 137 syl ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼𝑥 ∈ ( 𝐼𝑖 ) ) ) → ( 𝐼𝑖 ) = ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
181 179 180 eleqtrd ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼𝑥 ∈ ( 𝐼𝑖 ) ) ) → 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
182 178 181 jca ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼𝑥 ∈ ( 𝐼𝑖 ) ) ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) )
183 id ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) )
184 183 53 eleqtrrdi ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ dom 𝐼 )
185 184 ad2antrl ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → 𝑖 ∈ dom 𝐼 )
186 simprr ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
187 137 eqcomd ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐼𝑖 ) )
188 187 ad2antrl ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐼𝑖 ) )
189 186 188 eleqtrd ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → 𝑥 ∈ ( 𝐼𝑖 ) )
190 185 189 jca ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → ( 𝑖 ∈ dom 𝐼𝑥 ∈ ( 𝐼𝑖 ) ) )
191 182 190 impbida ( 𝜑 → ( ( 𝑖 ∈ dom 𝐼𝑥 ∈ ( 𝐼𝑖 ) ) ↔ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) )
192 191 rexbidv2 ( 𝜑 → ( ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) )
193 192 ad2antrr ( ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → ( ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑥 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) )
194 177 193 mpbird ( ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼𝑖 ) )
195 194 48 sylibr ( ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑥 ran 𝐼 )
196 elun2 ( 𝑥 ran 𝐼𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) )
197 195 196 syl ( ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) )
198 160 197 pm2.61dan ( ( 𝜑𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) )
199 198 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) )
200 dfss3 ( ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ⊆ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) ↔ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) )
201 199 200 sylibr ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ⊆ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) )
202 29 36 38 syl2anc ( 𝜑 { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } = ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ran 𝐼 ) )
203 201 202 sseqtrrd ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ⊆ { ( ran 𝑄 ∩ dom 𝐹 ) , ran 𝐼 } )
204 19 78 154 203 ssfiunibd ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 )
205 nfv 𝑥 𝜑
206 nfra1 𝑥𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦
207 205 206 nfan 𝑥 ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 )
208 1 sselda ( ( 𝜑𝑥 ∈ dom 𝐹 ) → 𝑥 ∈ ℝ )
209 4 adantr ( ( 𝜑𝑥 ∈ dom 𝐹 ) → 𝐵 ∈ ℝ )
210 209 208 resubcld ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( 𝐵𝑥 ) ∈ ℝ )
211 4 3 resubcld ( 𝜑 → ( 𝐵𝐴 ) ∈ ℝ )
212 6 211 eqeltrid ( 𝜑𝑇 ∈ ℝ )
213 212 adantr ( ( 𝜑𝑥 ∈ dom 𝐹 ) → 𝑇 ∈ ℝ )
214 3 4 posdifd ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵𝐴 ) ) )
215 5 214 mpbid ( 𝜑 → 0 < ( 𝐵𝐴 ) )
216 215 6 breqtrrdi ( 𝜑 → 0 < 𝑇 )
217 216 gt0ne0d ( 𝜑𝑇 ≠ 0 )
218 217 adantr ( ( 𝜑𝑥 ∈ dom 𝐹 ) → 𝑇 ≠ 0 )
219 210 213 218 redivcld ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( ( 𝐵𝑥 ) / 𝑇 ) ∈ ℝ )
220 219 flcld ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) ∈ ℤ )
221 220 zred ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) ∈ ℝ )
222 221 213 remulcld ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ∈ ℝ )
223 208 222 readdcld ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ )
224 17 fvmpt2 ( ( 𝑥 ∈ ℝ ∧ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ ) → ( 𝐸𝑥 ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) )
225 208 223 224 syl2anc ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( 𝐸𝑥 ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) )
226 225 fveq2d ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝐸𝑥 ) ) = ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) )
227 fvex ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) ∈ V
228 eleq1 ( 𝑘 = ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) → ( 𝑘 ∈ ℤ ↔ ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) ∈ ℤ ) )
229 228 anbi2d ( 𝑘 = ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) → ( ( ( 𝜑𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) ↔ ( ( 𝜑𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) ∈ ℤ ) ) )
230 oveq1 ( 𝑘 = ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) → ( 𝑘 · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) )
231 230 oveq2d ( 𝑘 = ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) )
232 231 fveq2d ( 𝑘 = ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) )
233 232 eqeq1d ( 𝑘 = ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) → ( ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹𝑥 ) ↔ ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝐹𝑥 ) ) )
234 229 233 imbi12d ( 𝑘 = ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) → ( ( ( ( 𝜑𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹𝑥 ) ) ↔ ( ( ( 𝜑𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝐹𝑥 ) ) ) )
235 227 234 15 vtocl ( ( ( 𝜑𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝐹𝑥 ) )
236 220 235 mpdan ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝐹𝑥 ) )
237 226 236 eqtr2d ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( 𝐹𝑥 ) = ( 𝐹 ‘ ( 𝐸𝑥 ) ) )
238 237 fveq2d ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐸𝑥 ) ) ) )
239 238 adantlr ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐸𝑥 ) ) ) )
240 fveq2 ( 𝑥 = 𝑤 → ( 𝐹𝑥 ) = ( 𝐹𝑤 ) )
241 240 fveq2d ( 𝑥 = 𝑤 → ( abs ‘ ( 𝐹𝑥 ) ) = ( abs ‘ ( 𝐹𝑤 ) ) )
242 241 breq1d ( 𝑥 = 𝑤 → ( ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ↔ ( abs ‘ ( 𝐹𝑤 ) ) ≤ 𝑦 ) )
243 242 cbvralvw ( ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ↔ ∀ 𝑤 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑤 ) ) ≤ 𝑦 )
244 243 biimpi ( ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 → ∀ 𝑤 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑤 ) ) ≤ 𝑦 )
245 244 ad2antlr ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ∀ 𝑤 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑤 ) ) ≤ 𝑦 )
246 iocssicc ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 )
247 3 adantr ( ( 𝜑𝑥 ∈ dom 𝐹 ) → 𝐴 ∈ ℝ )
248 5 adantr ( ( 𝜑𝑥 ∈ dom 𝐹 ) → 𝐴 < 𝐵 )
249 id ( 𝑥 = 𝑦𝑥 = 𝑦 )
250 oveq2 ( 𝑥 = 𝑦 → ( 𝐵𝑥 ) = ( 𝐵𝑦 ) )
251 250 oveq1d ( 𝑥 = 𝑦 → ( ( 𝐵𝑥 ) / 𝑇 ) = ( ( 𝐵𝑦 ) / 𝑇 ) )
252 251 fveq2d ( 𝑥 = 𝑦 → ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) )
253 252 oveq1d ( 𝑥 = 𝑦 → ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) )
254 249 253 oveq12d ( 𝑥 = 𝑦 → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) )
255 254 cbvmptv ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) )
256 17 255 eqtri 𝐸 = ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵𝑦 ) / 𝑇 ) ) · 𝑇 ) ) )
257 247 209 248 6 256 fourierdlem4 ( ( 𝜑𝑥 ∈ dom 𝐹 ) → 𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) )
258 257 208 ffvelrnd ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( 𝐸𝑥 ) ∈ ( 𝐴 (,] 𝐵 ) )
259 246 258 sseldi ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( 𝐸𝑥 ) ∈ ( 𝐴 [,] 𝐵 ) )
260 231 eleq1d ( 𝑘 = ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) → ( ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ dom 𝐹 ↔ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ dom 𝐹 ) )
261 229 260 imbi12d ( 𝑘 = ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) → ( ( ( ( 𝜑𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ dom 𝐹 ) ↔ ( ( ( 𝜑𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) ∈ ℤ ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ dom 𝐹 ) ) )
262 227 261 14 vtocl ( ( ( 𝜑𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) ∈ ℤ ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ dom 𝐹 )
263 220 262 mpdan ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ dom 𝐹 )
264 225 263 eqeltrd ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( 𝐸𝑥 ) ∈ dom 𝐹 )
265 259 264 elind ( ( 𝜑𝑥 ∈ dom 𝐹 ) → ( 𝐸𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) )
266 265 adantlr ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐸𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) )
267 fveq2 ( 𝑤 = ( 𝐸𝑥 ) → ( 𝐹𝑤 ) = ( 𝐹 ‘ ( 𝐸𝑥 ) ) )
268 267 fveq2d ( 𝑤 = ( 𝐸𝑥 ) → ( abs ‘ ( 𝐹𝑤 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐸𝑥 ) ) ) )
269 268 breq1d ( 𝑤 = ( 𝐸𝑥 ) → ( ( abs ‘ ( 𝐹𝑤 ) ) ≤ 𝑦 ↔ ( abs ‘ ( 𝐹 ‘ ( 𝐸𝑥 ) ) ) ≤ 𝑦 ) )
270 269 rspccva ( ( ∀ 𝑤 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑤 ) ) ≤ 𝑦 ∧ ( 𝐸𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝐸𝑥 ) ) ) ≤ 𝑦 )
271 245 266 270 syl2anc ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ ( 𝐸𝑥 ) ) ) ≤ 𝑦 )
272 239 271 eqbrtrd ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 )
273 272 ex ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) → ( 𝑥 ∈ dom 𝐹 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) )
274 207 273 ralrimi ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) → ∀ 𝑥 ∈ dom 𝐹 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 )
275 274 ex ( 𝜑 → ( ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 → ∀ 𝑥 ∈ dom 𝐹 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) )
276 275 reximdv ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) )
277 204 276 mpd ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 )