| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem71.dmf |
⊢ ( 𝜑 → dom 𝐹 ⊆ ℝ ) |
| 2 |
|
fourierdlem71.f |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℝ ) |
| 3 |
|
fourierdlem71.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 4 |
|
fourierdlem71.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 5 |
|
fourierdlem71.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 6 |
|
fourierdlem71.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
| 7 |
|
fourierdlem71.7 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 8 |
|
fourierdlem71.q |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 9 |
|
fourierdlem71.q0 |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
| 10 |
|
fourierdlem71.10 |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
| 11 |
|
fourierdlem71.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 12 |
|
fourierdlem71.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 13 |
|
fourierdlem71.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 14 |
|
fourierdlem71.xpt |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ dom 𝐹 ) |
| 15 |
|
fourierdlem71.fxpt |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 16 |
|
fourierdlem71.i |
⊢ 𝐼 = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 17 |
|
fourierdlem71.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 18 |
|
prfi |
⊢ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ∈ Fin |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ∈ Fin ) |
| 20 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → 𝐹 : dom 𝐹 ⟶ ℝ ) |
| 21 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → 𝜑 ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) |
| 23 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ V ) |
| 25 |
8 24
|
fexd |
⊢ ( 𝜑 → 𝑄 ∈ V ) |
| 26 |
|
rnexg |
⊢ ( 𝑄 ∈ V → ran 𝑄 ∈ V ) |
| 27 |
|
inex1g |
⊢ ( ran 𝑄 ∈ V → ( ran 𝑄 ∩ dom 𝐹 ) ∈ V ) |
| 28 |
25 26 27
|
3syl |
⊢ ( 𝜑 → ( ran 𝑄 ∩ dom 𝐹 ) ∈ V ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ( ran 𝑄 ∩ dom 𝐹 ) ∈ V ) |
| 30 |
|
ovex |
⊢ ( 0 ..^ 𝑀 ) ∈ V |
| 31 |
30
|
mptex |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ V |
| 32 |
16 31
|
eqeltri |
⊢ 𝐼 ∈ V |
| 33 |
32
|
rnex |
⊢ ran 𝐼 ∈ V |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → ran 𝐼 ∈ V ) |
| 35 |
34
|
uniexd |
⊢ ( 𝜑 → ∪ ran 𝐼 ∈ V ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ∪ ran 𝐼 ∈ V ) |
| 37 |
|
uniprg |
⊢ ( ( ( ran 𝑄 ∩ dom 𝐹 ) ∈ V ∧ ∪ ran 𝐼 ∈ V ) → ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } = ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
| 38 |
29 36 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } = ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
| 39 |
22 38
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
| 40 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) → 𝑥 ∈ dom 𝐹 ) |
| 41 |
40
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) ∧ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 42 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) ∧ ¬ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝜑 ) |
| 43 |
|
elunnel1 |
⊢ ( ( 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ∧ ¬ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ∈ ∪ ran 𝐼 ) |
| 44 |
43
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) ∧ ¬ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ∈ ∪ ran 𝐼 ) |
| 45 |
16
|
funmpt2 |
⊢ Fun 𝐼 |
| 46 |
|
elunirn |
⊢ ( Fun 𝐼 → ( 𝑥 ∈ ∪ ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 47 |
45 46
|
ax-mp |
⊢ ( 𝑥 ∈ ∪ ran 𝐼 ↔ ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
| 48 |
47
|
biimpi |
⊢ ( 𝑥 ∈ ∪ ran 𝐼 → ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
| 50 |
|
id |
⊢ ( 𝑖 ∈ dom 𝐼 → 𝑖 ∈ dom 𝐼 ) |
| 51 |
|
ovex |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ V |
| 52 |
51 16
|
dmmpti |
⊢ dom 𝐼 = ( 0 ..^ 𝑀 ) |
| 53 |
50 52
|
eleqtrdi |
⊢ ( 𝑖 ∈ dom 𝐼 → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 55 |
51
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ V ) |
| 56 |
16
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∈ V ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 57 |
54 55 56
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 58 |
|
cncff |
⊢ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 59 |
|
fdm |
⊢ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ → dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 60 |
11 58 59
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 61 |
53 60
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 62 |
|
ssdmres |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 63 |
61 62
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ) |
| 64 |
57 63
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑖 ) ⊆ dom 𝐹 ) |
| 65 |
64
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) → ( 𝐼 ‘ 𝑖 ) ⊆ dom 𝐹 ) |
| 66 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) → 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
| 67 |
65 66
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 68 |
67
|
3exp |
⊢ ( 𝜑 → ( 𝑖 ∈ dom 𝐼 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) → 𝑥 ∈ dom 𝐹 ) ) ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ( 𝑖 ∈ dom 𝐼 → ( 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) → 𝑥 ∈ dom 𝐹 ) ) ) |
| 70 |
69
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ( ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) → 𝑥 ∈ dom 𝐹 ) ) |
| 71 |
49 70
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → 𝑥 ∈ dom 𝐹 ) |
| 72 |
42 44 71
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) ∧ ¬ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 73 |
41 72
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 74 |
21 39 73
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → 𝑥 ∈ dom 𝐹 ) |
| 75 |
20 74
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 76 |
75
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 77 |
76
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 78 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) |
| 79 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ Fin ) |
| 80 |
|
rnffi |
⊢ ( ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ∧ ( 0 ... 𝑀 ) ∈ Fin ) → ran 𝑄 ∈ Fin ) |
| 81 |
8 79 80
|
syl2anc |
⊢ ( 𝜑 → ran 𝑄 ∈ Fin ) |
| 82 |
|
infi |
⊢ ( ran 𝑄 ∈ Fin → ( ran 𝑄 ∩ dom 𝐹 ) ∈ Fin ) |
| 83 |
81 82
|
syl |
⊢ ( 𝜑 → ( ran 𝑄 ∩ dom 𝐹 ) ∈ Fin ) |
| 84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ( ran 𝑄 ∩ dom 𝐹 ) ∈ Fin ) |
| 85 |
78 84
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 ∈ Fin ) |
| 86 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ 𝑤 ) → 𝜑 ) |
| 87 |
|
simpr |
⊢ ( ( 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ∧ 𝑥 ∈ 𝑤 ) → 𝑥 ∈ 𝑤 ) |
| 88 |
|
simpl |
⊢ ( ( 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ∧ 𝑥 ∈ 𝑤 ) → 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) |
| 89 |
87 88
|
eleqtrd |
⊢ ( ( 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ∧ 𝑥 ∈ 𝑤 ) → 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) |
| 90 |
89
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ 𝑤 ) → 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) |
| 91 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝐹 : dom 𝐹 ⟶ ℝ ) |
| 92 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑥 ∈ dom 𝐹 ) |
| 93 |
91 92
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 94 |
93
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 95 |
94
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 96 |
86 90 95
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ 𝑤 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 97 |
96
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 98 |
|
fimaxre3 |
⊢ ( ( 𝑤 ∈ Fin ∧ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 99 |
85 97 98
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 100 |
99
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) ∧ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 101 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) ∧ ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝜑 ) |
| 102 |
|
neqne |
⊢ ( ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) → 𝑤 ≠ ( ran 𝑄 ∩ dom 𝐹 ) ) |
| 103 |
|
elprn1 |
⊢ ( ( 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ∧ 𝑤 ≠ ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 = ∪ ran 𝐼 ) |
| 104 |
102 103
|
sylan2 |
⊢ ( ( 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ∧ ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 = ∪ ran 𝐼 ) |
| 105 |
104
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) ∧ ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → 𝑤 = ∪ ran 𝐼 ) |
| 106 |
|
fzofi |
⊢ ( 0 ..^ 𝑀 ) ∈ Fin |
| 107 |
16
|
rnmptfi |
⊢ ( ( 0 ..^ 𝑀 ) ∈ Fin → ran 𝐼 ∈ Fin ) |
| 108 |
106 107
|
ax-mp |
⊢ ran 𝐼 ∈ Fin |
| 109 |
108
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) → ran 𝐼 ∈ Fin ) |
| 110 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → 𝐹 : dom 𝐹 ⟶ ℝ ) |
| 111 |
110 71
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 112 |
111
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 113 |
112
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 114 |
113
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑥 ∈ ∪ ran 𝐼 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 115 |
51 16
|
fnmpti |
⊢ 𝐼 Fn ( 0 ..^ 𝑀 ) |
| 116 |
|
fvelrnb |
⊢ ( 𝐼 Fn ( 0 ..^ 𝑀 ) → ( 𝑡 ∈ ran 𝐼 ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) ) |
| 117 |
115 116
|
ax-mp |
⊢ ( 𝑡 ∈ ran 𝐼 ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
| 118 |
117
|
biimpi |
⊢ ( 𝑡 ∈ ran 𝐼 → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
| 119 |
118
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
| 120 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 121 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 122 |
121
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 123 |
120 122
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 124 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 126 |
120 125
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 127 |
123 126 11 13 12
|
cncfioobd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ) |
| 128 |
127
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ) |
| 129 |
|
fvres |
⊢ ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 130 |
129
|
fveq2d |
⊢ ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 131 |
130
|
breq1d |
⊢ ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
| 132 |
131
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
| 133 |
132
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
| 134 |
133
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
| 135 |
134
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
| 136 |
51 56
|
mpan2 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 137 |
|
id |
⊢ ( ( 𝐼 ‘ 𝑖 ) = 𝑡 → ( 𝐼 ‘ 𝑖 ) = 𝑡 ) |
| 138 |
136 137
|
sylan9req |
⊢ ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = 𝑡 ) |
| 139 |
138
|
3adant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = 𝑡 ) |
| 140 |
139
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
| 141 |
140
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
| 142 |
135 141
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
| 143 |
128 142
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝐼 ‘ 𝑖 ) = 𝑡 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
| 144 |
143
|
3exp |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝐼 ‘ 𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) ) |
| 145 |
144
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝐼 ‘ 𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) ) |
| 146 |
145
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ( ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝐼 ‘ 𝑖 ) = 𝑡 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ) |
| 147 |
119 146
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
| 148 |
147
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) ∧ 𝑡 ∈ ran 𝐼 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑡 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
| 149 |
|
eqimss |
⊢ ( 𝑤 = ∪ ran 𝐼 → 𝑤 ⊆ ∪ ran 𝐼 ) |
| 150 |
149
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) → 𝑤 ⊆ ∪ ran 𝐼 ) |
| 151 |
109 114 148 150
|
ssfiunibd |
⊢ ( ( 𝜑 ∧ 𝑤 = ∪ ran 𝐼 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 152 |
101 105 151
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) ∧ ¬ 𝑤 = ( ran 𝑄 ∩ dom 𝐹 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 153 |
100 152
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑤 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 154 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ran 𝑄 ) |
| 155 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) → 𝑥 ∈ dom 𝐹 ) |
| 156 |
155
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ dom 𝐹 ) |
| 157 |
154 156
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) ) |
| 158 |
|
elun1 |
⊢ ( 𝑥 ∈ ( ran 𝑄 ∩ dom 𝐹 ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
| 159 |
157 158
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
| 160 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑀 ∈ ℕ ) |
| 161 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 162 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 163 |
162
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 164 |
9
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝑄 ‘ 0 ) ) |
| 165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝐴 = ( 𝑄 ‘ 0 ) ) |
| 166 |
10
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = ( 𝑄 ‘ 𝑀 ) ) |
| 167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝐵 = ( 𝑄 ‘ 𝑀 ) ) |
| 168 |
165 167
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → ( 𝐴 [,] 𝐵 ) = ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
| 169 |
163 168
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
| 170 |
169
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
| 171 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → ¬ 𝑥 ∈ ran 𝑄 ) |
| 172 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 𝑗 ) ) |
| 173 |
172
|
breq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑄 ‘ 𝑘 ) < 𝑥 ↔ ( 𝑄 ‘ 𝑗 ) < 𝑥 ) ) |
| 174 |
173
|
cbvrabv |
⊢ { 𝑘 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑘 ) < 𝑥 } = { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) < 𝑥 } |
| 175 |
174
|
supeq1i |
⊢ sup ( { 𝑘 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑘 ) < 𝑥 } , ℝ , < ) = sup ( { 𝑗 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑗 ) < 𝑥 } , ℝ , < ) |
| 176 |
160 161 170 171 175
|
fourierdlem25 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 177 |
53
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 178 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) → 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
| 179 |
177 136
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) → ( 𝐼 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 180 |
178 179
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 181 |
177 180
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 182 |
|
id |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 183 |
182 52
|
eleqtrrdi |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ dom 𝐼 ) |
| 184 |
183
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → 𝑖 ∈ dom 𝐼 ) |
| 185 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 186 |
136
|
eqcomd |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐼 ‘ 𝑖 ) ) |
| 187 |
186
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐼 ‘ 𝑖 ) ) |
| 188 |
185 187
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
| 189 |
184 188
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) → ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ) |
| 190 |
181 189
|
impbida |
⊢ ( 𝜑 → ( ( 𝑖 ∈ dom 𝐼 ∧ 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) ↔ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 191 |
190
|
rexbidv2 |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 192 |
191
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → ( ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ( 0 ..^ 𝑀 ) 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 193 |
176 192
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → ∃ 𝑖 ∈ dom 𝐼 𝑥 ∈ ( 𝐼 ‘ 𝑖 ) ) |
| 194 |
193 47
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ∪ ran 𝐼 ) |
| 195 |
|
elun2 |
⊢ ( 𝑥 ∈ ∪ ran 𝐼 → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
| 196 |
194 195
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) ∧ ¬ 𝑥 ∈ ran 𝑄 ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
| 197 |
159 196
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
| 198 |
197
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
| 199 |
|
dfss3 |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ⊆ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ↔ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) 𝑥 ∈ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
| 200 |
198 199
|
sylibr |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ⊆ ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
| 201 |
28 35 37
|
syl2anc |
⊢ ( 𝜑 → ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } = ( ( ran 𝑄 ∩ dom 𝐹 ) ∪ ∪ ran 𝐼 ) ) |
| 202 |
200 201
|
sseqtrrd |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ⊆ ∪ { ( ran 𝑄 ∩ dom 𝐹 ) , ∪ ran 𝐼 } ) |
| 203 |
19 77 153 202
|
ssfiunibd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 204 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 205 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 |
| 206 |
204 205
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 207 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝑥 ∈ ℝ ) |
| 208 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐵 ∈ ℝ ) |
| 209 |
208 207
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐵 − 𝑥 ) ∈ ℝ ) |
| 210 |
4 3
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 211 |
6 210
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 212 |
211
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝑇 ∈ ℝ ) |
| 213 |
3 4
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 214 |
5 213
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
| 215 |
214 6
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑇 ) |
| 216 |
215
|
gt0ne0d |
⊢ ( 𝜑 → 𝑇 ≠ 0 ) |
| 217 |
216
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝑇 ≠ 0 ) |
| 218 |
209 212 217
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( 𝐵 − 𝑥 ) / 𝑇 ) ∈ ℝ ) |
| 219 |
218
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) |
| 220 |
219
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℝ ) |
| 221 |
220 212
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ∈ ℝ ) |
| 222 |
207 221
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ ) |
| 223 |
17
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ ℝ ) → ( 𝐸 ‘ 𝑥 ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 224 |
207 222 223
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐸 ‘ 𝑥 ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 225 |
224
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) ) |
| 226 |
|
fvex |
⊢ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ V |
| 227 |
|
eleq1 |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( 𝑘 ∈ ℤ ↔ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) ) |
| 228 |
227
|
anbi2d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) ) ) |
| 229 |
|
oveq1 |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( 𝑘 · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
| 230 |
229
|
oveq2d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) = ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 231 |
230
|
fveq2d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) ) |
| 232 |
231
|
eqeq1d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 233 |
228 232
|
imbi12d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 234 |
226 233 15
|
vtocl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 235 |
219 234
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 236 |
225 235
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) |
| 237 |
236
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ) |
| 238 |
237
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ) |
| 239 |
|
fveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 240 |
239
|
fveq2d |
⊢ ( 𝑥 = 𝑤 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 241 |
240
|
breq1d |
⊢ ( 𝑥 = 𝑤 → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ↔ ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ≤ 𝑦 ) ) |
| 242 |
241
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ↔ ∀ 𝑤 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ≤ 𝑦 ) |
| 243 |
242
|
biimpi |
⊢ ( ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 → ∀ 𝑤 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ≤ 𝑦 ) |
| 244 |
243
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ∀ 𝑤 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ≤ 𝑦 ) |
| 245 |
|
iocssicc |
⊢ ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 246 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐴 ∈ ℝ ) |
| 247 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐴 < 𝐵 ) |
| 248 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
| 249 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 − 𝑥 ) = ( 𝐵 − 𝑦 ) ) |
| 250 |
249
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 − 𝑥 ) / 𝑇 ) = ( ( 𝐵 − 𝑦 ) / 𝑇 ) ) |
| 251 |
250
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( 𝐵 − 𝑦 ) / 𝑇 ) ) ) |
| 252 |
251
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( 𝐵 − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) |
| 253 |
248 252
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 254 |
253
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 255 |
17 254
|
eqtri |
⊢ 𝐸 = ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 256 |
246 208 247 6 255
|
fourierdlem4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐸 : ℝ ⟶ ( 𝐴 (,] 𝐵 ) ) |
| 257 |
256 207
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐸 ‘ 𝑥 ) ∈ ( 𝐴 (,] 𝐵 ) ) |
| 258 |
245 257
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐸 ‘ 𝑥 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 259 |
230
|
eleq1d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ dom 𝐹 ↔ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ dom 𝐹 ) ) |
| 260 |
228 259
|
imbi12d |
⊢ ( 𝑘 = ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) → ( ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ dom 𝐹 ) ↔ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ dom 𝐹 ) ) ) |
| 261 |
226 260 14
|
vtocl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) ∧ ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) ∈ ℤ ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ dom 𝐹 ) |
| 262 |
219 261
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ∈ dom 𝐹 ) |
| 263 |
224 262
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐸 ‘ 𝑥 ) ∈ dom 𝐹 ) |
| 264 |
258 263
|
elind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐸 ‘ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) |
| 265 |
264
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐸 ‘ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) |
| 266 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐸 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) |
| 267 |
266
|
fveq2d |
⊢ ( 𝑤 = ( 𝐸 ‘ 𝑥 ) → ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ) |
| 268 |
267
|
breq1d |
⊢ ( 𝑤 = ( 𝐸 ‘ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ≤ 𝑦 ↔ ( abs ‘ ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ≤ 𝑦 ) ) |
| 269 |
268
|
rspccva |
⊢ ( ( ∀ 𝑤 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑤 ) ) ≤ 𝑦 ∧ ( 𝐸 ‘ 𝑥 ) ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ≤ 𝑦 ) |
| 270 |
244 265 269
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ ( 𝐸 ‘ 𝑥 ) ) ) ≤ 𝑦 ) |
| 271 |
238 270
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 272 |
271
|
ex |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) → ( 𝑥 ∈ dom 𝐹 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 273 |
206 272
|
ralrimi |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) → ∀ 𝑥 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 274 |
273
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 → ∀ 𝑥 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 275 |
274
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ dom 𝐹 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 276 |
203 275
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) |