Metamath Proof Explorer


Theorem fourierdlem71

Description: A periodic piecewise continuous function, possibly undefined on a finite set in each periodic interval, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem71.dmf φ dom F
fourierdlem71.f φ F : dom F
fourierdlem71.a φ A
fourierdlem71.b φ B
fourierdlem71.altb φ A < B
fourierdlem71.t T = B A
fourierdlem71.7 φ M
fourierdlem71.q φ Q : 0 M
fourierdlem71.q0 φ Q 0 = A
fourierdlem71.10 φ Q M = B
fourierdlem71.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem71.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
fourierdlem71.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
fourierdlem71.xpt φ x dom F k x + k T dom F
fourierdlem71.fxpt φ x dom F k F x + k T = F x
fourierdlem71.i I = i 0 ..^ M Q i Q i + 1
fourierdlem71.e E = x x + B x T T
Assertion fourierdlem71 φ y x dom F F x y

Proof

Step Hyp Ref Expression
1 fourierdlem71.dmf φ dom F
2 fourierdlem71.f φ F : dom F
3 fourierdlem71.a φ A
4 fourierdlem71.b φ B
5 fourierdlem71.altb φ A < B
6 fourierdlem71.t T = B A
7 fourierdlem71.7 φ M
8 fourierdlem71.q φ Q : 0 M
9 fourierdlem71.q0 φ Q 0 = A
10 fourierdlem71.10 φ Q M = B
11 fourierdlem71.fcn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
12 fourierdlem71.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
13 fourierdlem71.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
14 fourierdlem71.xpt φ x dom F k x + k T dom F
15 fourierdlem71.fxpt φ x dom F k F x + k T = F x
16 fourierdlem71.i I = i 0 ..^ M Q i Q i + 1
17 fourierdlem71.e E = x x + B x T T
18 prfi ran Q dom F ran I Fin
19 18 a1i φ ran Q dom F ran I Fin
20 2 adantr φ x ran Q dom F ran I F : dom F
21 simpl φ x ran Q dom F ran I φ
22 simpr φ x ran Q dom F ran I x ran Q dom F ran I
23 ovex 0 M V
24 23 a1i φ 0 M V
25 fex Q : 0 M 0 M V Q V
26 8 24 25 syl2anc φ Q V
27 rnexg Q V ran Q V
28 inex1g ran Q V ran Q dom F V
29 26 27 28 3syl φ ran Q dom F V
30 29 adantr φ x ran Q dom F ran I ran Q dom F V
31 ovex 0 ..^ M V
32 31 mptex i 0 ..^ M Q i Q i + 1 V
33 16 32 eqeltri I V
34 33 rnex ran I V
35 34 a1i φ ran I V
36 35 uniexd φ ran I V
37 36 adantr φ x ran Q dom F ran I ran I V
38 uniprg ran Q dom F V ran I V ran Q dom F ran I = ran Q dom F ran I
39 30 37 38 syl2anc φ x ran Q dom F ran I ran Q dom F ran I = ran Q dom F ran I
40 22 39 eleqtrd φ x ran Q dom F ran I x ran Q dom F ran I
41 elinel2 x ran Q dom F x dom F
42 41 adantl φ x ran Q dom F ran I x ran Q dom F x dom F
43 simpll φ x ran Q dom F ran I ¬ x ran Q dom F φ
44 elunnel1 x ran Q dom F ran I ¬ x ran Q dom F x ran I
45 44 adantll φ x ran Q dom F ran I ¬ x ran Q dom F x ran I
46 16 funmpt2 Fun I
47 elunirn Fun I x ran I i dom I x I i
48 46 47 ax-mp x ran I i dom I x I i
49 48 biimpi x ran I i dom I x I i
50 49 adantl φ x ran I i dom I x I i
51 id i dom I i dom I
52 ovex Q i Q i + 1 V
53 52 16 dmmpti dom I = 0 ..^ M
54 51 53 eleqtrdi i dom I i 0 ..^ M
55 54 adantl φ i dom I i 0 ..^ M
56 52 a1i φ i dom I Q i Q i + 1 V
57 16 fvmpt2 i 0 ..^ M Q i Q i + 1 V I i = Q i Q i + 1
58 55 56 57 syl2anc φ i dom I I i = Q i Q i + 1
59 cncff F Q i Q i + 1 : Q i Q i + 1 cn F Q i Q i + 1 : Q i Q i + 1
60 fdm F Q i Q i + 1 : Q i Q i + 1 dom F Q i Q i + 1 = Q i Q i + 1
61 11 59 60 3syl φ i 0 ..^ M dom F Q i Q i + 1 = Q i Q i + 1
62 54 61 sylan2 φ i dom I dom F Q i Q i + 1 = Q i Q i + 1
63 ssdmres Q i Q i + 1 dom F dom F Q i Q i + 1 = Q i Q i + 1
64 62 63 sylibr φ i dom I Q i Q i + 1 dom F
65 58 64 eqsstrd φ i dom I I i dom F
66 65 3adant3 φ i dom I x I i I i dom F
67 simp3 φ i dom I x I i x I i
68 66 67 sseldd φ i dom I x I i x dom F
69 68 3exp φ i dom I x I i x dom F
70 69 adantr φ x ran I i dom I x I i x dom F
71 70 rexlimdv φ x ran I i dom I x I i x dom F
72 50 71 mpd φ x ran I x dom F
73 43 45 72 syl2anc φ x ran Q dom F ran I ¬ x ran Q dom F x dom F
74 42 73 pm2.61dan φ x ran Q dom F ran I x dom F
75 21 40 74 syl2anc φ x ran Q dom F ran I x dom F
76 20 75 ffvelrnd φ x ran Q dom F ran I F x
77 76 recnd φ x ran Q dom F ran I F x
78 77 abscld φ x ran Q dom F ran I F x
79 simpr φ w = ran Q dom F w = ran Q dom F
80 fzfid φ 0 M Fin
81 rnffi Q : 0 M 0 M Fin ran Q Fin
82 8 80 81 syl2anc φ ran Q Fin
83 infi ran Q Fin ran Q dom F Fin
84 82 83 syl φ ran Q dom F Fin
85 84 adantr φ w = ran Q dom F ran Q dom F Fin
86 79 85 eqeltrd φ w = ran Q dom F w Fin
87 simpll φ w = ran Q dom F x w φ
88 simpr w = ran Q dom F x w x w
89 simpl w = ran Q dom F x w w = ran Q dom F
90 88 89 eleqtrd w = ran Q dom F x w x ran Q dom F
91 90 adantll φ w = ran Q dom F x w x ran Q dom F
92 2 adantr φ x ran Q dom F F : dom F
93 41 adantl φ x ran Q dom F x dom F
94 92 93 ffvelrnd φ x ran Q dom F F x
95 94 recnd φ x ran Q dom F F x
96 95 abscld φ x ran Q dom F F x
97 87 91 96 syl2anc φ w = ran Q dom F x w F x
98 97 ralrimiva φ w = ran Q dom F x w F x
99 fimaxre3 w Fin x w F x y x w F x y
100 86 98 99 syl2anc φ w = ran Q dom F y x w F x y
101 100 adantlr φ w ran Q dom F ran I w = ran Q dom F y x w F x y
102 simpll φ w ran Q dom F ran I ¬ w = ran Q dom F φ
103 neqne ¬ w = ran Q dom F w ran Q dom F
104 elprn1 w ran Q dom F ran I w ran Q dom F w = ran I
105 103 104 sylan2 w ran Q dom F ran I ¬ w = ran Q dom F w = ran I
106 105 adantll φ w ran Q dom F ran I ¬ w = ran Q dom F w = ran I
107 fzofi 0 ..^ M Fin
108 16 rnmptfi 0 ..^ M Fin ran I Fin
109 107 108 ax-mp ran I Fin
110 109 a1i φ w = ran I ran I Fin
111 2 adantr φ x ran I F : dom F
112 111 72 ffvelrnd φ x ran I F x
113 112 recnd φ x ran I F x
114 113 adantlr φ w = ran I x ran I F x
115 114 abscld φ w = ran I x ran I F x
116 52 16 fnmpti I Fn 0 ..^ M
117 fvelrnb I Fn 0 ..^ M t ran I i 0 ..^ M I i = t
118 116 117 ax-mp t ran I i 0 ..^ M I i = t
119 118 biimpi t ran I i 0 ..^ M I i = t
120 119 adantl φ t ran I i 0 ..^ M I i = t
121 8 adantr φ i 0 ..^ M Q : 0 M
122 elfzofz i 0 ..^ M i 0 M
123 122 adantl φ i 0 ..^ M i 0 M
124 121 123 ffvelrnd φ i 0 ..^ M Q i
125 fzofzp1 i 0 ..^ M i + 1 0 M
126 125 adantl φ i 0 ..^ M i + 1 0 M
127 121 126 ffvelrnd φ i 0 ..^ M Q i + 1
128 124 127 11 13 12 cncfioobd φ i 0 ..^ M b x Q i Q i + 1 F Q i Q i + 1 x b
129 128 3adant3 φ i 0 ..^ M I i = t b x Q i Q i + 1 F Q i Q i + 1 x b
130 fvres x Q i Q i + 1 F Q i Q i + 1 x = F x
131 130 fveq2d x Q i Q i + 1 F Q i Q i + 1 x = F x
132 131 breq1d x Q i Q i + 1 F Q i Q i + 1 x b F x b
133 132 adantl φ i 0 ..^ M x Q i Q i + 1 F Q i Q i + 1 x b F x b
134 133 ralbidva φ i 0 ..^ M x Q i Q i + 1 F Q i Q i + 1 x b x Q i Q i + 1 F x b
135 134 rexbidv φ i 0 ..^ M b x Q i Q i + 1 F Q i Q i + 1 x b b x Q i Q i + 1 F x b
136 135 3adant3 φ i 0 ..^ M I i = t b x Q i Q i + 1 F Q i Q i + 1 x b b x Q i Q i + 1 F x b
137 52 57 mpan2 i 0 ..^ M I i = Q i Q i + 1
138 id I i = t I i = t
139 137 138 sylan9req i 0 ..^ M I i = t Q i Q i + 1 = t
140 139 3adant1 φ i 0 ..^ M I i = t Q i Q i + 1 = t
141 140 raleqdv φ i 0 ..^ M I i = t x Q i Q i + 1 F x b x t F x b
142 141 rexbidv φ i 0 ..^ M I i = t b x Q i Q i + 1 F x b b x t F x b
143 136 142 bitrd φ i 0 ..^ M I i = t b x Q i Q i + 1 F Q i Q i + 1 x b b x t F x b
144 129 143 mpbid φ i 0 ..^ M I i = t b x t F x b
145 144 3exp φ i 0 ..^ M I i = t b x t F x b
146 145 adantr φ t ran I i 0 ..^ M I i = t b x t F x b
147 146 rexlimdv φ t ran I i 0 ..^ M I i = t b x t F x b
148 120 147 mpd φ t ran I b x t F x b
149 148 adantlr φ w = ran I t ran I b x t F x b
150 eqimss w = ran I w ran I
151 150 adantl φ w = ran I w ran I
152 110 115 149 151 ssfiunibd φ w = ran I y x w F x y
153 102 106 152 syl2anc φ w ran Q dom F ran I ¬ w = ran Q dom F y x w F x y
154 101 153 pm2.61dan φ w ran Q dom F ran I y x w F x y
155 simpr φ x A B dom F x ran Q x ran Q
156 elinel2 x A B dom F x dom F
157 156 ad2antlr φ x A B dom F x ran Q x dom F
158 155 157 elind φ x A B dom F x ran Q x ran Q dom F
159 elun1 x ran Q dom F x ran Q dom F ran I
160 158 159 syl φ x A B dom F x ran Q x ran Q dom F ran I
161 7 ad2antrr φ x A B dom F ¬ x ran Q M
162 8 ad2antrr φ x A B dom F ¬ x ran Q Q : 0 M
163 elinel1 x A B dom F x A B
164 163 adantl φ x A B dom F x A B
165 9 eqcomd φ A = Q 0
166 165 adantr φ x A B dom F A = Q 0
167 10 eqcomd φ B = Q M
168 167 adantr φ x A B dom F B = Q M
169 166 168 oveq12d φ x A B dom F A B = Q 0 Q M
170 164 169 eleqtrd φ x A B dom F x Q 0 Q M
171 170 adantr φ x A B dom F ¬ x ran Q x Q 0 Q M
172 simpr φ x A B dom F ¬ x ran Q ¬ x ran Q
173 fveq2 k = j Q k = Q j
174 173 breq1d k = j Q k < x Q j < x
175 174 cbvrabv k 0 ..^ M | Q k < x = j 0 ..^ M | Q j < x
176 175 supeq1i sup k 0 ..^ M | Q k < x < = sup j 0 ..^ M | Q j < x <
177 161 162 171 172 176 fourierdlem25 φ x A B dom F ¬ x ran Q i 0 ..^ M x Q i Q i + 1
178 54 ad2antrl φ i dom I x I i i 0 ..^ M
179 simprr φ i dom I x I i x I i
180 178 137 syl φ i dom I x I i I i = Q i Q i + 1
181 179 180 eleqtrd φ i dom I x I i x Q i Q i + 1
182 178 181 jca φ i dom I x I i i 0 ..^ M x Q i Q i + 1
183 id i 0 ..^ M i 0 ..^ M
184 183 53 eleqtrrdi i 0 ..^ M i dom I
185 184 ad2antrl φ i 0 ..^ M x Q i Q i + 1 i dom I
186 simprr φ i 0 ..^ M x Q i Q i + 1 x Q i Q i + 1
187 137 eqcomd i 0 ..^ M Q i Q i + 1 = I i
188 187 ad2antrl φ i 0 ..^ M x Q i Q i + 1 Q i Q i + 1 = I i
189 186 188 eleqtrd φ i 0 ..^ M x Q i Q i + 1 x I i
190 185 189 jca φ i 0 ..^ M x Q i Q i + 1 i dom I x I i
191 182 190 impbida φ i dom I x I i i 0 ..^ M x Q i Q i + 1
192 191 rexbidv2 φ i dom I x I i i 0 ..^ M x Q i Q i + 1
193 192 ad2antrr φ x A B dom F ¬ x ran Q i dom I x I i i 0 ..^ M x Q i Q i + 1
194 177 193 mpbird φ x A B dom F ¬ x ran Q i dom I x I i
195 194 48 sylibr φ x A B dom F ¬ x ran Q x ran I
196 elun2 x ran I x ran Q dom F ran I
197 195 196 syl φ x A B dom F ¬ x ran Q x ran Q dom F ran I
198 160 197 pm2.61dan φ x A B dom F x ran Q dom F ran I
199 198 ralrimiva φ x A B dom F x ran Q dom F ran I
200 dfss3 A B dom F ran Q dom F ran I x A B dom F x ran Q dom F ran I
201 199 200 sylibr φ A B dom F ran Q dom F ran I
202 29 36 38 syl2anc φ ran Q dom F ran I = ran Q dom F ran I
203 201 202 sseqtrrd φ A B dom F ran Q dom F ran I
204 19 78 154 203 ssfiunibd φ y x A B dom F F x y
205 nfv x φ
206 nfra1 x x A B dom F F x y
207 205 206 nfan x φ x A B dom F F x y
208 1 sselda φ x dom F x
209 4 adantr φ x dom F B
210 209 208 resubcld φ x dom F B x
211 4 3 resubcld φ B A
212 6 211 eqeltrid φ T
213 212 adantr φ x dom F T
214 3 4 posdifd φ A < B 0 < B A
215 5 214 mpbid φ 0 < B A
216 215 6 breqtrrdi φ 0 < T
217 216 gt0ne0d φ T 0
218 217 adantr φ x dom F T 0
219 210 213 218 redivcld φ x dom F B x T
220 219 flcld φ x dom F B x T
221 220 zred φ x dom F B x T
222 221 213 remulcld φ x dom F B x T T
223 208 222 readdcld φ x dom F x + B x T T
224 17 fvmpt2 x x + B x T T E x = x + B x T T
225 208 223 224 syl2anc φ x dom F E x = x + B x T T
226 225 fveq2d φ x dom F F E x = F x + B x T T
227 fvex B x T V
228 eleq1 k = B x T k B x T
229 228 anbi2d k = B x T φ x dom F k φ x dom F B x T
230 oveq1 k = B x T k T = B x T T
231 230 oveq2d k = B x T x + k T = x + B x T T
232 231 fveq2d k = B x T F x + k T = F x + B x T T
233 232 eqeq1d k = B x T F x + k T = F x F x + B x T T = F x
234 229 233 imbi12d k = B x T φ x dom F k F x + k T = F x φ x dom F B x T F x + B x T T = F x
235 227 234 15 vtocl φ x dom F B x T F x + B x T T = F x
236 220 235 mpdan φ x dom F F x + B x T T = F x
237 226 236 eqtr2d φ x dom F F x = F E x
238 237 fveq2d φ x dom F F x = F E x
239 238 adantlr φ x A B dom F F x y x dom F F x = F E x
240 fveq2 x = w F x = F w
241 240 fveq2d x = w F x = F w
242 241 breq1d x = w F x y F w y
243 242 cbvralvw x A B dom F F x y w A B dom F F w y
244 243 biimpi x A B dom F F x y w A B dom F F w y
245 244 ad2antlr φ x A B dom F F x y x dom F w A B dom F F w y
246 iocssicc A B A B
247 3 adantr φ x dom F A
248 5 adantr φ x dom F A < B
249 id x = y x = y
250 oveq2 x = y B x = B y
251 250 oveq1d x = y B x T = B y T
252 251 fveq2d x = y B x T = B y T
253 252 oveq1d x = y B x T T = B y T T
254 249 253 oveq12d x = y x + B x T T = y + B y T T
255 254 cbvmptv x x + B x T T = y y + B y T T
256 17 255 eqtri E = y y + B y T T
257 247 209 248 6 256 fourierdlem4 φ x dom F E : A B
258 257 208 ffvelrnd φ x dom F E x A B
259 246 258 sseldi φ x dom F E x A B
260 231 eleq1d k = B x T x + k T dom F x + B x T T dom F
261 229 260 imbi12d k = B x T φ x dom F k x + k T dom F φ x dom F B x T x + B x T T dom F
262 227 261 14 vtocl φ x dom F B x T x + B x T T dom F
263 220 262 mpdan φ x dom F x + B x T T dom F
264 225 263 eqeltrd φ x dom F E x dom F
265 259 264 elind φ x dom F E x A B dom F
266 265 adantlr φ x A B dom F F x y x dom F E x A B dom F
267 fveq2 w = E x F w = F E x
268 267 fveq2d w = E x F w = F E x
269 268 breq1d w = E x F w y F E x y
270 269 rspccva w A B dom F F w y E x A B dom F F E x y
271 245 266 270 syl2anc φ x A B dom F F x y x dom F F E x y
272 239 271 eqbrtrd φ x A B dom F F x y x dom F F x y
273 272 ex φ x A B dom F F x y x dom F F x y
274 207 273 ralrimi φ x A B dom F F x y x dom F F x y
275 274 ex φ x A B dom F F x y x dom F F x y
276 275 reximdv φ y x A B dom F F x y y x dom F F x y
277 204 276 mpd φ y x dom F F x y