Metamath Proof Explorer


Theorem fourierdlem25

Description: If C is not in the range of the partition, then it is in an open interval induced by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem25.m φM
fourierdlem25.qf φQ:0M
fourierdlem25.cel φCQ0QM
fourierdlem25.cnel φ¬CranQ
fourierdlem25.i I=supk0..^M|Qk<C<
Assertion fourierdlem25 φj0..^MCQjQj+1

Proof

Step Hyp Ref Expression
1 fourierdlem25.m φM
2 fourierdlem25.qf φQ:0M
3 fourierdlem25.cel φCQ0QM
4 fourierdlem25.cnel φ¬CranQ
5 fourierdlem25.i I=supk0..^M|Qk<C<
6 ssrab2 k0..^M|Qk<C0..^M
7 ltso <Or
8 7 a1i φ<Or
9 fzofi 0..^MFin
10 ssfi 0..^MFink0..^M|Qk<C0..^Mk0..^M|Qk<CFin
11 9 6 10 mp2an k0..^M|Qk<CFin
12 11 a1i φk0..^M|Qk<CFin
13 0zd φ0
14 1 nnzd φM
15 1 nngt0d φ0<M
16 fzolb 00..^M0M0<M
17 13 14 15 16 syl3anbrc φ00..^M
18 elfzofz 00..^M00M
19 17 18 syl φ00M
20 2 19 ffvelcdmd φQ0
21 1 nnnn0d φM0
22 nn0uz 0=0
23 21 22 eleqtrdi φM0
24 eluzfz2 M0M0M
25 23 24 syl φM0M
26 2 25 ffvelcdmd φQM
27 20 26 iccssred φQ0QM
28 27 3 sseldd φC
29 20 rexrd φQ0*
30 26 rexrd φQM*
31 iccgelb Q0*QM*CQ0QMQ0C
32 29 30 3 31 syl3anc φQ0C
33 simpr φC=Q0C=Q0
34 2 ffnd φQFn0M
35 34 adantr φC=Q0QFn0M
36 19 adantr φC=Q000M
37 fnfvelrn QFn0M00MQ0ranQ
38 35 36 37 syl2anc φC=Q0Q0ranQ
39 33 38 eqeltrd φC=Q0CranQ
40 4 39 mtand φ¬C=Q0
41 40 neqned φCQ0
42 20 28 32 41 leneltd φQ0<C
43 fveq2 k=0Qk=Q0
44 43 breq1d k=0Qk<CQ0<C
45 44 elrab 0k0..^M|Qk<C00..^MQ0<C
46 17 42 45 sylanbrc φ0k0..^M|Qk<C
47 46 ne0d φk0..^M|Qk<C
48 fzossfz 0..^M0M
49 fzssz 0M
50 zssre
51 49 50 sstri 0M
52 48 51 sstri 0..^M
53 6 52 sstri k0..^M|Qk<C
54 53 a1i φk0..^M|Qk<C
55 fisupcl <Ork0..^M|Qk<CFink0..^M|Qk<Ck0..^M|Qk<Csupk0..^M|Qk<C<k0..^M|Qk<C
56 8 12 47 54 55 syl13anc φsupk0..^M|Qk<C<k0..^M|Qk<C
57 6 56 sselid φsupk0..^M|Qk<C<0..^M
58 5 57 eqeltrid φI0..^M
59 48 58 sselid φI0M
60 2 59 ffvelcdmd φQI
61 60 rexrd φQI*
62 fzofzp1 I0..^MI+10M
63 58 62 syl φI+10M
64 2 63 ffvelcdmd φQI+1
65 64 rexrd φQI+1*
66 5 56 eqeltrid φIk0..^M|Qk<C
67 fveq2 k=IQk=QI
68 67 breq1d k=IQk<CQI<C
69 68 elrab Ik0..^M|Qk<CI0..^MQI<C
70 66 69 sylib φI0..^MQI<C
71 70 simprd φQI<C
72 52 58 sselid φI
73 ltp1 II<I+1
74 id II
75 peano2re II+1
76 74 75 ltnled II<I+1¬I+1I
77 73 76 mpbid I¬I+1I
78 72 77 syl φ¬I+1I
79 48 49 sstri 0..^M
80 6 79 sstri k0..^M|Qk<C
81 80 a1i φQI+1<Ck0..^M|Qk<C
82 elrabi hk0..^M|Qk<Ch0..^M
83 elfzo0le h0..^MhM
84 82 83 syl hk0..^M|Qk<ChM
85 84 adantl φhk0..^M|Qk<ChM
86 85 ralrimiva φhk0..^M|Qk<ChM
87 breq2 m=MhmhM
88 87 ralbidv m=Mhk0..^M|Qk<Chmhk0..^M|Qk<ChM
89 88 rspcev Mhk0..^M|Qk<ChMmhk0..^M|Qk<Chm
90 14 86 89 syl2anc φmhk0..^M|Qk<Chm
91 90 adantr φQI+1<Cmhk0..^M|Qk<Chm
92 elfzuz I+10MI+10
93 63 92 syl φI+10
94 93 adantr φQI+1<CI+10
95 14 adantr φQI+1<CM
96 51 63 sselid φI+1
97 96 adantr φQI+1<CI+1
98 95 zred φQI+1<CM
99 elfzle2 I+10MI+1M
100 63 99 syl φI+1M
101 100 adantr φQI+1<CI+1M
102 simpr φQI+1<CQI+1<C
103 64 adantr φQI+1<CQI+1
104 28 adantr φQI+1<CC
105 103 104 ltnled φQI+1<CQI+1<C¬CQI+1
106 102 105 mpbid φQI+1<C¬CQI+1
107 iccleub Q0*QM*CQ0QMCQM
108 29 30 3 107 syl3anc φCQM
109 108 adantr φM=I+1CQM
110 fveq2 M=I+1QM=QI+1
111 110 adantl φM=I+1QM=QI+1
112 109 111 breqtrd φM=I+1CQI+1
113 112 adantlr φQI+1<CM=I+1CQI+1
114 106 113 mtand φQI+1<C¬M=I+1
115 114 neqned φQI+1<CMI+1
116 97 98 101 115 leneltd φQI+1<CI+1<M
117 elfzo2 I+10..^MI+10MI+1<M
118 94 95 116 117 syl3anbrc φQI+1<CI+10..^M
119 fveq2 k=I+1Qk=QI+1
120 119 breq1d k=I+1Qk<CQI+1<C
121 120 elrab I+1k0..^M|Qk<CI+10..^MQI+1<C
122 118 102 121 sylanbrc φQI+1<CI+1k0..^M|Qk<C
123 suprzub k0..^M|Qk<Cmhk0..^M|Qk<ChmI+1k0..^M|Qk<CI+1supk0..^M|Qk<C<
124 81 91 122 123 syl3anc φQI+1<CI+1supk0..^M|Qk<C<
125 124 5 breqtrrdi φQI+1<CI+1I
126 78 125 mtand φ¬QI+1<C
127 eqcom QI+1=CC=QI+1
128 127 biimpi QI+1=CC=QI+1
129 128 adantl φQI+1=CC=QI+1
130 34 adantr φQI+1=CQFn0M
131 63 adantr φQI+1=CI+10M
132 fnfvelrn QFn0MI+10MQI+1ranQ
133 130 131 132 syl2anc φQI+1=CQI+1ranQ
134 129 133 eqeltrd φQI+1=CCranQ
135 4 134 mtand φ¬QI+1=C
136 126 135 jca φ¬QI+1<C¬QI+1=C
137 pm4.56 ¬QI+1<C¬QI+1=C¬QI+1<CQI+1=C
138 136 137 sylib φ¬QI+1<CQI+1=C
139 64 28 leloed φQI+1CQI+1<CQI+1=C
140 138 139 mtbird φ¬QI+1C
141 28 64 ltnled φC<QI+1¬QI+1C
142 140 141 mpbird φC<QI+1
143 61 65 28 71 142 eliood φCQIQI+1
144 fveq2 j=IQj=QI
145 oveq1 j=Ij+1=I+1
146 145 fveq2d j=IQj+1=QI+1
147 144 146 oveq12d j=IQjQj+1=QIQI+1
148 147 eleq2d j=ICQjQj+1CQIQI+1
149 148 rspcev I0..^MCQIQI+1j0..^MCQjQj+1
150 58 143 149 syl2anc φj0..^MCQjQj+1