Metamath Proof Explorer


Theorem suprzub

Description: The supremum of a bounded-above set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015)

Ref Expression
Assertion suprzub AxyAyxBABsupA<

Proof

Step Hyp Ref Expression
1 simp1 AxyAyxBAA
2 zssre
3 1 2 sstrdi AxyAyxBAA
4 simp3 AxyAyxBABA
5 3 4 sseldd AxyAyxBAB
6 4 ne0d AxyAyxBAA
7 simp2 AxyAyxBAxyAyx
8 suprzcl2 AAxyAyxsupA<A
9 1 6 7 8 syl3anc AxyAyxBAsupA<A
10 3 9 sseldd AxyAyxBAsupA<
11 ltso <Or
12 11 a1i AxyAyxBA<Or
13 zsupss AAxyAyxxAyA¬x<yyy<xzAy<z
14 1 6 7 13 syl3anc AxyAyxBAxAyA¬x<yyy<xzAy<z
15 ssrexv AxAyA¬x<yyy<xzAy<zxyA¬x<yyy<xzAy<z
16 3 14 15 sylc AxyAyxBAxyA¬x<yyy<xzAy<z
17 12 16 supub AxyAyxBABA¬supA<<B
18 4 17 mpd AxyAyxBA¬supA<<B
19 5 10 18 nltled AxyAyxBABsupA<