Description: The supremum of a bounded-above set of integers is a member of the set. (This version of suprzcl avoids ax-pre-sup .) (Contributed by Mario Carneiro, 21-Apr-2015) (Revised by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | suprzcl2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsupss | |
|
2 | ssel2 | |
|
3 | 2 | zred | |
4 | ltso | |
|
5 | 4 | a1i | |
6 | 5 | eqsup | |
7 | 6 | mptru | |
8 | 7 | 3expib | |
9 | 3 8 | syl | |
10 | simpr | |
|
11 | eleq1 | |
|
12 | 10 11 | syl5ibrcom | |
13 | 9 12 | syld | |
14 | 13 | rexlimdva | |
15 | 14 | 3ad2ant1 | |
16 | 1 15 | mpd | |