Metamath Proof Explorer


Theorem suprzcl2

Description: The supremum of a bounded-above set of integers is a member of the set. (This version of suprzcl avoids ax-pre-sup .) (Contributed by Mario Carneiro, 21-Apr-2015) (Revised by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion suprzcl2 AAxyAyxsupA<A

Proof

Step Hyp Ref Expression
1 zsupss AAxyAyxxAyA¬x<yyy<xzAy<z
2 ssel2 AxAx
3 2 zred AxAx
4 ltso <Or
5 4 a1i <Or
6 5 eqsup xyA¬x<yyy<xzAy<zsupA<=x
7 6 mptru xyA¬x<yyy<xzAy<zsupA<=x
8 7 3expib xyA¬x<yyy<xzAy<zsupA<=x
9 3 8 syl AxAyA¬x<yyy<xzAy<zsupA<=x
10 simpr AxAxA
11 eleq1 supA<=xsupA<AxA
12 10 11 syl5ibrcom AxAsupA<=xsupA<A
13 9 12 syld AxAyA¬x<yyy<xzAy<zsupA<A
14 13 rexlimdva AxAyA¬x<yyy<xzAy<zsupA<A
15 14 3ad2ant1 AAxyAyxxAyA¬x<yyy<xzAy<zsupA<A
16 1 15 mpd AAxyAyxsupA<A