Metamath Proof Explorer


Theorem fourierdlem12

Description: A point of a partition is not an element of any open interval determined by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem12.1 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
fourierdlem12.2 ( 𝜑𝑀 ∈ ℕ )
fourierdlem12.3 ( 𝜑𝑄 ∈ ( 𝑃𝑀 ) )
fourierdlem12.4 ( 𝜑𝑋 ∈ ran 𝑄 )
Assertion fourierdlem12 ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 fourierdlem12.1 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } )
2 fourierdlem12.2 ( 𝜑𝑀 ∈ ℕ )
3 fourierdlem12.3 ( 𝜑𝑄 ∈ ( 𝑃𝑀 ) )
4 fourierdlem12.4 ( 𝜑𝑋 ∈ ran 𝑄 )
5 1 fourierdlem2 ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) )
6 2 5 syl ( 𝜑 → ( 𝑄 ∈ ( 𝑃𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) )
7 3 6 mpbid ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) )
8 7 simpld ( 𝜑𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) )
9 elmapi ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
10 ffn ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ → 𝑄 Fn ( 0 ... 𝑀 ) )
11 8 9 10 3syl ( 𝜑𝑄 Fn ( 0 ... 𝑀 ) )
12 fvelrnb ( 𝑄 Fn ( 0 ... 𝑀 ) → ( 𝑋 ∈ ran 𝑄 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄𝑗 ) = 𝑋 ) )
13 11 12 syl ( 𝜑 → ( 𝑋 ∈ ran 𝑄 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄𝑗 ) = 𝑋 ) )
14 4 13 mpbid ( 𝜑 → ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄𝑗 ) = 𝑋 )
15 14 adantr ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄𝑗 ) = 𝑋 )
16 8 9 syl ( 𝜑𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
17 16 adantr ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
18 fzofzp1 ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) )
19 18 adantl ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) )
20 17 19 ffvelrnd ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ )
21 20 adantr ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ )
22 21 3ad2antl1 ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ 𝑖 < 𝑗 ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ )
23 frn ( 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ → ran 𝑄 ⊆ ℝ )
24 16 23 syl ( 𝜑 → ran 𝑄 ⊆ ℝ )
25 24 4 sseldd ( 𝜑𝑋 ∈ ℝ )
26 25 ad2antrr ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑋 ∈ ℝ )
27 26 3ad2antl1 ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ 𝑖 < 𝑗 ) → 𝑋 ∈ ℝ )
28 17 ffvelrnda ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄𝑗 ) ∈ ℝ )
29 28 3adant3 ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) → ( 𝑄𝑗 ) ∈ ℝ )
30 29 adantr ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ 𝑖 < 𝑗 ) → ( 𝑄𝑗 ) ∈ ℝ )
31 simpr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑖 < 𝑗 )
32 elfzoelz ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ℤ )
33 32 ad2antrr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑖 ∈ ℤ )
34 elfzelz ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℤ )
35 34 ad2antlr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑗 ∈ ℤ )
36 zltp1le ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑖 < 𝑗 ↔ ( 𝑖 + 1 ) ≤ 𝑗 ) )
37 33 35 36 syl2anc ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑖 < 𝑗 ↔ ( 𝑖 + 1 ) ≤ 𝑗 ) )
38 31 37 mpbid ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑖 + 1 ) ≤ 𝑗 )
39 33 peano2zd ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑖 + 1 ) ∈ ℤ )
40 eluz ( ( ( 𝑖 + 1 ) ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ∈ ( ℤ ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑖 + 1 ) ≤ 𝑗 ) )
41 39 35 40 syl2anc ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑗 ∈ ( ℤ ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑖 + 1 ) ≤ 𝑗 ) )
42 38 41 mpbird ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑗 ∈ ( ℤ ‘ ( 𝑖 + 1 ) ) )
43 42 adantlll ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → 𝑗 ∈ ( ℤ ‘ ( 𝑖 + 1 ) ) )
44 17 ad2antrr ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
45 0red ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 0 ∈ ℝ )
46 elfzelz ( 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) → 𝑤 ∈ ℤ )
47 46 zred ( 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) → 𝑤 ∈ ℝ )
48 47 adantl ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑤 ∈ ℝ )
49 32 peano2zd ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ℤ )
50 49 zred ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ℝ )
51 50 adantr ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → ( 𝑖 + 1 ) ∈ ℝ )
52 32 zred ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ℝ )
53 52 adantr ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑖 ∈ ℝ )
54 elfzole1 ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 0 ≤ 𝑖 )
55 54 adantr ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 0 ≤ 𝑖 )
56 53 ltp1d ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑖 < ( 𝑖 + 1 ) )
57 45 53 51 55 56 lelttrd ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 0 < ( 𝑖 + 1 ) )
58 elfzle1 ( 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) → ( 𝑖 + 1 ) ≤ 𝑤 )
59 58 adantl ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → ( 𝑖 + 1 ) ≤ 𝑤 )
60 45 51 48 57 59 ltletrd ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 0 < 𝑤 )
61 45 48 60 ltled ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 0 ≤ 𝑤 )
62 61 adantlr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 0 ≤ 𝑤 )
63 47 adantl ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑤 ∈ ℝ )
64 34 zred ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℝ )
65 64 adantr ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑗 ∈ ℝ )
66 elfzel2 ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℤ )
67 66 zred ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ℝ )
68 67 adantr ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑀 ∈ ℝ )
69 elfzle2 ( 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) → 𝑤𝑗 )
70 69 adantl ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑤𝑗 )
71 elfzle2 ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗𝑀 )
72 71 adantr ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑗𝑀 )
73 63 65 68 70 72 letrd ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑤𝑀 )
74 73 adantll ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑤𝑀 )
75 46 adantl ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑤 ∈ ℤ )
76 0zd ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 0 ∈ ℤ )
77 66 ad2antlr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑀 ∈ ℤ )
78 elfz ( ( 𝑤 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑤 ∈ ( 0 ... 𝑀 ) ↔ ( 0 ≤ 𝑤𝑤𝑀 ) ) )
79 75 76 77 78 syl3anc ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → ( 𝑤 ∈ ( 0 ... 𝑀 ) ↔ ( 0 ≤ 𝑤𝑤𝑀 ) ) )
80 62 74 79 mpbir2and ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑤 ∈ ( 0 ... 𝑀 ) )
81 80 adantlll ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → 𝑤 ∈ ( 0 ... 𝑀 ) )
82 44 81 ffvelrnd ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → ( 𝑄𝑤 ) ∈ ℝ )
83 82 adantlr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... 𝑗 ) ) → ( 𝑄𝑤 ) ∈ ℝ )
84 simp-4l ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 𝜑 )
85 0red ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 0 ∈ ℝ )
86 elfzelz ( 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) → 𝑤 ∈ ℤ )
87 86 zred ( 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) → 𝑤 ∈ ℝ )
88 87 adantl ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 𝑤 ∈ ℝ )
89 0red ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 0 ∈ ℝ )
90 50 adantr ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → ( 𝑖 + 1 ) ∈ ℝ )
91 87 adantl ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 𝑤 ∈ ℝ )
92 0red ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 0 ∈ ℝ )
93 52 ltp1d ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 < ( 𝑖 + 1 ) )
94 92 52 50 54 93 lelttrd ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 0 < ( 𝑖 + 1 ) )
95 94 adantr ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 0 < ( 𝑖 + 1 ) )
96 elfzle1 ( 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) → ( 𝑖 + 1 ) ≤ 𝑤 )
97 96 adantl ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → ( 𝑖 + 1 ) ≤ 𝑤 )
98 89 90 91 95 97 ltletrd ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 0 < 𝑤 )
99 98 adantlr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 0 < 𝑤 )
100 85 88 99 ltled ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 0 ≤ 𝑤 )
101 100 adantlll ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 0 ≤ 𝑤 )
102 101 adantlr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 0 ≤ 𝑤 )
103 87 adantl ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 𝑤 ∈ ℝ )
104 peano2rem ( 𝑗 ∈ ℝ → ( 𝑗 − 1 ) ∈ ℝ )
105 64 104 syl ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 − 1 ) ∈ ℝ )
106 105 adantr ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) ∈ ℝ )
107 67 adantr ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 𝑀 ∈ ℝ )
108 elfzle2 ( 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) → 𝑤 ≤ ( 𝑗 − 1 ) )
109 108 adantl ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 𝑤 ≤ ( 𝑗 − 1 ) )
110 zlem1lt ( ( 𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑗𝑀 ↔ ( 𝑗 − 1 ) < 𝑀 ) )
111 34 66 110 syl2anc ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗𝑀 ↔ ( 𝑗 − 1 ) < 𝑀 ) )
112 71 111 mpbid ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 − 1 ) < 𝑀 )
113 112 adantr ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → ( 𝑗 − 1 ) < 𝑀 )
114 103 106 107 109 113 lelttrd ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 𝑤 < 𝑀 )
115 114 adantlr ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑖 < 𝑗 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 𝑤 < 𝑀 )
116 115 adantlll ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 𝑤 < 𝑀 )
117 86 adantl ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 𝑤 ∈ ℤ )
118 0zd ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 0 ∈ ℤ )
119 66 ad3antlr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 𝑀 ∈ ℤ )
120 elfzo ( ( 𝑤 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 𝑤𝑤 < 𝑀 ) ) )
121 117 118 119 120 syl3anc ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 𝑤𝑤 < 𝑀 ) ) )
122 102 116 121 mpbir2and ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → 𝑤 ∈ ( 0 ..^ 𝑀 ) )
123 16 adantr ( ( 𝜑𝑤 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
124 elfzofz ( 𝑤 ∈ ( 0 ..^ 𝑀 ) → 𝑤 ∈ ( 0 ... 𝑀 ) )
125 124 adantl ( ( 𝜑𝑤 ∈ ( 0 ..^ 𝑀 ) ) → 𝑤 ∈ ( 0 ... 𝑀 ) )
126 123 125 ffvelrnd ( ( 𝜑𝑤 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑤 ) ∈ ℝ )
127 fzofzp1 ( 𝑤 ∈ ( 0 ..^ 𝑀 ) → ( 𝑤 + 1 ) ∈ ( 0 ... 𝑀 ) )
128 127 adantl ( ( 𝜑𝑤 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑤 + 1 ) ∈ ( 0 ... 𝑀 ) )
129 123 128 ffvelrnd ( ( 𝜑𝑤 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑤 + 1 ) ) ∈ ℝ )
130 eleq1w ( 𝑖 = 𝑤 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑤 ∈ ( 0 ..^ 𝑀 ) ) )
131 130 anbi2d ( 𝑖 = 𝑤 → ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ↔ ( 𝜑𝑤 ∈ ( 0 ..^ 𝑀 ) ) ) )
132 fveq2 ( 𝑖 = 𝑤 → ( 𝑄𝑖 ) = ( 𝑄𝑤 ) )
133 oveq1 ( 𝑖 = 𝑤 → ( 𝑖 + 1 ) = ( 𝑤 + 1 ) )
134 133 fveq2d ( 𝑖 = 𝑤 → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑄 ‘ ( 𝑤 + 1 ) ) )
135 132 134 breq12d ( 𝑖 = 𝑤 → ( ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑄𝑤 ) < ( 𝑄 ‘ ( 𝑤 + 1 ) ) ) )
136 131 135 imbi12d ( 𝑖 = 𝑤 → ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( 𝜑𝑤 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑤 ) < ( 𝑄 ‘ ( 𝑤 + 1 ) ) ) ) )
137 7 simprrd ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) )
138 137 r19.21bi ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) )
139 136 138 chvarvv ( ( 𝜑𝑤 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑤 ) < ( 𝑄 ‘ ( 𝑤 + 1 ) ) )
140 126 129 139 ltled ( ( 𝜑𝑤 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑤 ) ≤ ( 𝑄 ‘ ( 𝑤 + 1 ) ) )
141 84 122 140 syl2anc ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) ∧ 𝑤 ∈ ( ( 𝑖 + 1 ) ... ( 𝑗 − 1 ) ) ) → ( 𝑄𝑤 ) ≤ ( 𝑄 ‘ ( 𝑤 + 1 ) ) )
142 43 83 141 monoord ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑖 < 𝑗 ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑄𝑗 ) )
143 142 3adantl3 ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ 𝑖 < 𝑗 ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≤ ( 𝑄𝑗 ) )
144 16 ffvelrnda ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄𝑗 ) ∈ ℝ )
145 144 3adant3 ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) → ( 𝑄𝑗 ) ∈ ℝ )
146 simp3 ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) → ( 𝑄𝑗 ) = 𝑋 )
147 145 146 eqled ( ( 𝜑𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) → ( 𝑄𝑗 ) ≤ 𝑋 )
148 147 3adant1r ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) → ( 𝑄𝑗 ) ≤ 𝑋 )
149 148 adantr ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ 𝑖 < 𝑗 ) → ( 𝑄𝑗 ) ≤ 𝑋 )
150 22 30 27 143 149 letrd ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ 𝑖 < 𝑗 ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≤ 𝑋 )
151 22 27 150 lensymd ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ 𝑖 < 𝑗 ) → ¬ 𝑋 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) )
152 151 intnand ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ 𝑖 < 𝑗 ) → ¬ ( ( 𝑄𝑖 ) < 𝑋𝑋 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
153 64 ad2antlr ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 < 𝑗 ) → 𝑗 ∈ ℝ )
154 52 ad3antlr ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 < 𝑗 ) → 𝑖 ∈ ℝ )
155 simpr ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 < 𝑗 ) → ¬ 𝑖 < 𝑗 )
156 153 154 155 nltled ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ¬ 𝑖 < 𝑗 ) → 𝑗𝑖 )
157 156 3adantl3 ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ ¬ 𝑖 < 𝑗 ) → 𝑗𝑖 )
158 eqcom ( ( 𝑄𝑗 ) = 𝑋𝑋 = ( 𝑄𝑗 ) )
159 158 biimpi ( ( 𝑄𝑗 ) = 𝑋𝑋 = ( 𝑄𝑗 ) )
160 159 adantr ( ( ( 𝑄𝑗 ) = 𝑋𝑗𝑖 ) → 𝑋 = ( 𝑄𝑗 ) )
161 160 3ad2antl3 ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ 𝑗𝑖 ) → 𝑋 = ( 𝑄𝑗 ) )
162 34 ad2antlr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗𝑖 ) → 𝑗 ∈ ℤ )
163 32 ad2antrr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗𝑖 ) → 𝑖 ∈ ℤ )
164 simpr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗𝑖 ) → 𝑗𝑖 )
165 eluz2 ( 𝑖 ∈ ( ℤ𝑗 ) ↔ ( 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑗𝑖 ) )
166 162 163 164 165 syl3anbrc ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗𝑖 ) → 𝑖 ∈ ( ℤ𝑗 ) )
167 166 adantlll ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗𝑖 ) → 𝑖 ∈ ( ℤ𝑗 ) )
168 17 ad2antrr ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ )
169 0zd ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 0 ∈ ℤ )
170 66 ad2antlr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑀 ∈ ℤ )
171 elfzelz ( 𝑤 ∈ ( 𝑗 ... 𝑖 ) → 𝑤 ∈ ℤ )
172 171 adantl ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑤 ∈ ℤ )
173 169 170 172 3jca ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ ) )
174 0red ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 0 ∈ ℝ )
175 64 adantr ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑗 ∈ ℝ )
176 171 zred ( 𝑤 ∈ ( 𝑗 ... 𝑖 ) → 𝑤 ∈ ℝ )
177 176 adantl ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑤 ∈ ℝ )
178 elfzle1 ( 𝑗 ∈ ( 0 ... 𝑀 ) → 0 ≤ 𝑗 )
179 178 adantr ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 0 ≤ 𝑗 )
180 elfzle1 ( 𝑤 ∈ ( 𝑗 ... 𝑖 ) → 𝑗𝑤 )
181 180 adantl ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑗𝑤 )
182 174 175 177 179 181 letrd ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 0 ≤ 𝑤 )
183 182 adantll ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 0 ≤ 𝑤 )
184 176 adantl ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑤 ∈ ℝ )
185 elfzoel2 ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑀 ∈ ℤ )
186 185 zred ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑀 ∈ ℝ )
187 186 adantr ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑀 ∈ ℝ )
188 52 adantr ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑖 ∈ ℝ )
189 elfzle2 ( 𝑤 ∈ ( 𝑗 ... 𝑖 ) → 𝑤𝑖 )
190 189 adantl ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑤𝑖 )
191 elfzolt2 ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 < 𝑀 )
192 191 adantr ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑖 < 𝑀 )
193 184 188 187 190 192 lelttrd ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑤 < 𝑀 )
194 184 187 193 ltled ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑤𝑀 )
195 194 adantlr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑤𝑀 )
196 173 183 195 jca32 ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → ( ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( 0 ≤ 𝑤𝑤𝑀 ) ) )
197 196 adantlll ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → ( ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( 0 ≤ 𝑤𝑤𝑀 ) ) )
198 elfz2 ( 𝑤 ∈ ( 0 ... 𝑀 ) ↔ ( ( 0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ∧ ( 0 ≤ 𝑤𝑤𝑀 ) ) )
199 197 198 sylibr ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → 𝑤 ∈ ( 0 ... 𝑀 ) )
200 168 199 ffvelrnd ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → ( 𝑄𝑤 ) ∈ ℝ )
201 200 adantlr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗𝑖 ) ∧ 𝑤 ∈ ( 𝑗 ... 𝑖 ) ) → ( 𝑄𝑤 ) ∈ ℝ )
202 simplll ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝜑 )
203 0red ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 0 ∈ ℝ )
204 64 ad2antlr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑗 ∈ ℝ )
205 elfzelz ( 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) → 𝑤 ∈ ℤ )
206 205 zred ( 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) → 𝑤 ∈ ℝ )
207 206 adantl ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑤 ∈ ℝ )
208 178 ad2antlr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 0 ≤ 𝑗 )
209 elfzle1 ( 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) → 𝑗𝑤 )
210 209 adantl ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑗𝑤 )
211 203 204 207 208 210 letrd ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 0 ≤ 𝑤 )
212 206 adantl ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑤 ∈ ℝ )
213 52 adantr ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑖 ∈ ℝ )
214 186 adantr ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑀 ∈ ℝ )
215 peano2rem ( 𝑖 ∈ ℝ → ( 𝑖 − 1 ) ∈ ℝ )
216 213 215 syl ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → ( 𝑖 − 1 ) ∈ ℝ )
217 elfzle2 ( 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) → 𝑤 ≤ ( 𝑖 − 1 ) )
218 217 adantl ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑤 ≤ ( 𝑖 − 1 ) )
219 213 ltm1d ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → ( 𝑖 − 1 ) < 𝑖 )
220 212 216 213 218 219 lelttrd ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑤 < 𝑖 )
221 191 adantr ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑖 < 𝑀 )
222 212 213 214 220 221 lttrd ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑤 < 𝑀 )
223 222 adantlr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑤 < 𝑀 )
224 205 adantl ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑤 ∈ ℤ )
225 0zd ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 0 ∈ ℤ )
226 185 ad2antrr ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑀 ∈ ℤ )
227 224 225 226 120 syl3anc ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → ( 𝑤 ∈ ( 0 ..^ 𝑀 ) ↔ ( 0 ≤ 𝑤𝑤 < 𝑀 ) ) )
228 211 223 227 mpbir2and ( ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑤 ∈ ( 0 ..^ 𝑀 ) )
229 228 adantlll ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → 𝑤 ∈ ( 0 ..^ 𝑀 ) )
230 202 229 140 syl2anc ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → ( 𝑄𝑤 ) ≤ ( 𝑄 ‘ ( 𝑤 + 1 ) ) )
231 230 adantlr ( ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗𝑖 ) ∧ 𝑤 ∈ ( 𝑗 ... ( 𝑖 − 1 ) ) ) → ( 𝑄𝑤 ) ≤ ( 𝑄 ‘ ( 𝑤 + 1 ) ) )
232 167 201 231 monoord ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑗𝑖 ) → ( 𝑄𝑗 ) ≤ ( 𝑄𝑖 ) )
233 232 3adantl3 ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ 𝑗𝑖 ) → ( 𝑄𝑗 ) ≤ ( 𝑄𝑖 ) )
234 161 233 eqbrtrd ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ 𝑗𝑖 ) → 𝑋 ≤ ( 𝑄𝑖 ) )
235 25 adantr ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℝ )
236 elfzofz ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) )
237 236 adantl ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) )
238 17 237 ffvelrnd ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄𝑖 ) ∈ ℝ )
239 235 238 lenltd ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 ≤ ( 𝑄𝑖 ) ↔ ¬ ( 𝑄𝑖 ) < 𝑋 ) )
240 239 adantr ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗𝑖 ) → ( 𝑋 ≤ ( 𝑄𝑖 ) ↔ ¬ ( 𝑄𝑖 ) < 𝑋 ) )
241 240 3ad2antl1 ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ 𝑗𝑖 ) → ( 𝑋 ≤ ( 𝑄𝑖 ) ↔ ¬ ( 𝑄𝑖 ) < 𝑋 ) )
242 234 241 mpbid ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ 𝑗𝑖 ) → ¬ ( 𝑄𝑖 ) < 𝑋 )
243 157 242 syldan ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ ¬ 𝑖 < 𝑗 ) → ¬ ( 𝑄𝑖 ) < 𝑋 )
244 243 intnanrd ( ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) ∧ ¬ 𝑖 < 𝑗 ) → ¬ ( ( 𝑄𝑖 ) < 𝑋𝑋 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
245 152 244 pm2.61dan ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) → ¬ ( ( 𝑄𝑖 ) < 𝑋𝑋 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
246 245 intnand ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) → ¬ ( ( ( 𝑄𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ*𝑋 ∈ ℝ* ) ∧ ( ( 𝑄𝑖 ) < 𝑋𝑋 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) )
247 elioo3g ( 𝑋 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( ( 𝑄𝑖 ) ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ*𝑋 ∈ ℝ* ) ∧ ( ( 𝑄𝑖 ) < 𝑋𝑋 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) )
248 246 247 sylnibr ( ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ∧ ( 𝑄𝑗 ) = 𝑋 ) → ¬ 𝑋 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )
249 248 rexlimdv3a ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑀 ) ( 𝑄𝑗 ) = 𝑋 → ¬ 𝑋 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) )
250 15 249 mpd ( ( 𝜑𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ¬ 𝑋 ∈ ( ( 𝑄𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) )