Metamath Proof Explorer


Theorem dirkerf

Description: For any natural number N , the Dirichlet Kernel ( DN ) is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis dirkerf.1 D=nyifymod2π=02n+12πsinn+12y2πsiny2
Assertion dirkerf NDN:

Proof

Step Hyp Ref Expression
1 dirkerf.1 D=nyifymod2π=02n+12πsinn+12y2πsiny2
2 1 dirkerval2 NyDNy=ifymod2π=02 N+12πsinN+12y2πsiny2
3 1 dirkerre NyDNy
4 2 3 eqeltrrd Nyifymod2π=02 N+12πsinN+12y2πsiny2
5 4 fmpttd Nyifymod2π=02 N+12πsinN+12y2πsiny2:
6 1 dirkerval NDN=yifymod2π=02 N+12πsinN+12y2πsiny2
7 6 feq1d NDN:yifymod2π=02 N+12πsinN+12y2πsiny2:
8 5 7 mpbird NDN: