Metamath Proof Explorer


Theorem dirkerval2

Description: The N_th Dirichlet Kernel evaluated at a specific point S . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis dirkerval2.1 D=nsifsmod2π=02n+12πsinn+12s2πsins2
Assertion dirkerval2 NSDNS=ifSmod2π=02 N+12πsinN+12S2πsinS2

Proof

Step Hyp Ref Expression
1 dirkerval2.1 D=nsifsmod2π=02n+12πsinn+12s2πsins2
2 1 dirkerval NDN=sifsmod2π=02 N+12πsinN+12s2πsins2
3 oveq1 s=tsmod2π=tmod2π
4 3 eqeq1d s=tsmod2π=0tmod2π=0
5 oveq2 s=tN+12s=N+12t
6 5 fveq2d s=tsinN+12s=sinN+12t
7 fvoveq1 s=tsins2=sint2
8 7 oveq2d s=t2πsins2=2πsint2
9 6 8 oveq12d s=tsinN+12s2πsins2=sinN+12t2πsint2
10 4 9 ifbieq2d s=tifsmod2π=02 N+12πsinN+12s2πsins2=iftmod2π=02 N+12πsinN+12t2πsint2
11 10 cbvmptv sifsmod2π=02 N+12πsinN+12s2πsins2=tiftmod2π=02 N+12πsinN+12t2πsint2
12 2 11 eqtrdi NDN=tiftmod2π=02 N+12πsinN+12t2πsint2
13 12 adantr NSDN=tiftmod2π=02 N+12πsinN+12t2πsint2
14 simpr NSt=St=S
15 14 oveq1d NSt=Stmod2π=Smod2π
16 15 eqeq1d NSt=Stmod2π=0Smod2π=0
17 14 oveq2d NSt=SN+12t=N+12S
18 17 fveq2d NSt=SsinN+12t=sinN+12S
19 14 fvoveq1d NSt=Ssint2=sinS2
20 19 oveq2d NSt=S2πsint2=2πsinS2
21 18 20 oveq12d NSt=SsinN+12t2πsint2=sinN+12S2πsinS2
22 16 21 ifbieq2d NSt=Siftmod2π=02 N+12πsinN+12t2πsint2=ifSmod2π=02 N+12πsinN+12S2πsinS2
23 simpr NSS
24 2re 2
25 24 a1i N2
26 nnre NN
27 25 26 remulcld N2 N
28 1red N1
29 27 28 readdcld N2 N+1
30 pire π
31 30 a1i Nπ
32 25 31 remulcld N2π
33 2cnd N2
34 31 recnd Nπ
35 2pos 0<2
36 35 a1i N0<2
37 36 gt0ne0d N20
38 pipos 0<π
39 38 a1i N0<π
40 39 gt0ne0d Nπ0
41 33 34 37 40 mulne0d N2π0
42 29 32 41 redivcld N2 N+12π
43 42 ad2antrr NSSmod2π=02 N+12π
44 dirker2re NS¬Smod2π=0sinN+12S2πsinS2
45 43 44 ifclda NSifSmod2π=02 N+12πsinN+12S2πsinS2
46 13 22 23 45 fvmptd NSDNS=ifSmod2π=02 N+12πsinN+12S2πsinS2