| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem95.f |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
fourierdlem95.xre |
|- ( ph -> X e. RR ) |
| 3 |
|
fourierdlem95.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` m ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 4 |
|
fourierdlem95.m |
|- ( ph -> M e. NN ) |
| 5 |
|
fourierdlem95.v |
|- ( ph -> V e. ( P ` M ) ) |
| 6 |
|
fourierdlem95.x |
|- ( ph -> X e. ran V ) |
| 7 |
|
fourierdlem95.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 8 |
|
fourierdlem95.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) ) |
| 9 |
|
fourierdlem95.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) ) |
| 10 |
|
fourierdlem95.h |
|- H = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
| 11 |
|
fourierdlem95.k |
|- K = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
| 12 |
|
fourierdlem95.u |
|- U = ( s e. ( -u _pi [,] _pi ) |-> ( ( H ` s ) x. ( K ` s ) ) ) |
| 13 |
|
fourierdlem95.s |
|- S = ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) ) |
| 14 |
|
fourierdlem95.g |
|- G = ( s e. ( -u _pi [,] _pi ) |-> ( ( U ` s ) x. ( S ` s ) ) ) |
| 15 |
|
fourierdlem95.i |
|- I = ( RR _D F ) |
| 16 |
|
fourierdlem95.ifn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( I |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR ) |
| 17 |
|
fourierdlem95.b |
|- ( ph -> B e. ( ( I |` ( -oo (,) X ) ) limCC X ) ) |
| 18 |
|
fourierdlem95.c |
|- ( ph -> C e. ( ( I |` ( X (,) +oo ) ) limCC X ) ) |
| 19 |
|
fourierdlem95.y |
|- ( ph -> Y e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
| 20 |
|
fourierdlem95.w |
|- ( ph -> W e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 21 |
|
fourierdlem95.admvol |
|- ( ph -> A e. dom vol ) |
| 22 |
|
fourierdlem95.ass |
|- ( ph -> A C_ ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
| 23 |
|
fourierlemenplusacver2eqitgdirker.e |
|- E = ( n e. NN |-> ( S. A ( G ` s ) _d s / _pi ) ) |
| 24 |
|
fourierdlem95.d |
|- D = ( n e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
| 25 |
|
fourierdlem95.o |
|- ( ph -> O e. RR ) |
| 26 |
|
fourierdlem95.ifeqo |
|- ( ( ph /\ s e. A ) -> if ( 0 < s , Y , W ) = O ) |
| 27 |
|
fourierdlem95.itgdirker |
|- ( ( ph /\ n e. NN ) -> S. A ( ( D ` n ) ` s ) _d s = ( 1 / 2 ) ) |
| 28 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
| 29 |
22
|
difss2d |
|- ( ph -> A C_ ( -u _pi [,] _pi ) ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ n e. NN ) -> A C_ ( -u _pi [,] _pi ) ) |
| 31 |
30
|
sselda |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> s e. ( -u _pi [,] _pi ) ) |
| 32 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> F : RR --> RR ) |
| 33 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. RR ) |
| 34 |
|
ioossre |
|- ( X (,) +oo ) C_ RR |
| 35 |
34
|
a1i |
|- ( ph -> ( X (,) +oo ) C_ RR ) |
| 36 |
1 35
|
fssresd |
|- ( ph -> ( F |` ( X (,) +oo ) ) : ( X (,) +oo ) --> RR ) |
| 37 |
|
ioosscn |
|- ( X (,) +oo ) C_ CC |
| 38 |
37
|
a1i |
|- ( ph -> ( X (,) +oo ) C_ CC ) |
| 39 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 40 |
|
pnfxr |
|- +oo e. RR* |
| 41 |
40
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 42 |
2
|
ltpnfd |
|- ( ph -> X < +oo ) |
| 43 |
39 41 2 42
|
lptioo1cn |
|- ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) +oo ) ) ) |
| 44 |
36 38 43 19
|
limcrecl |
|- ( ph -> Y e. RR ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ n e. NN ) -> Y e. RR ) |
| 46 |
|
ioossre |
|- ( -oo (,) X ) C_ RR |
| 47 |
46
|
a1i |
|- ( ph -> ( -oo (,) X ) C_ RR ) |
| 48 |
1 47
|
fssresd |
|- ( ph -> ( F |` ( -oo (,) X ) ) : ( -oo (,) X ) --> RR ) |
| 49 |
|
ioosscn |
|- ( -oo (,) X ) C_ CC |
| 50 |
49
|
a1i |
|- ( ph -> ( -oo (,) X ) C_ CC ) |
| 51 |
|
mnfxr |
|- -oo e. RR* |
| 52 |
51
|
a1i |
|- ( ph -> -oo e. RR* ) |
| 53 |
2
|
mnfltd |
|- ( ph -> -oo < X ) |
| 54 |
39 52 2 53
|
lptioo2cn |
|- ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( -oo (,) X ) ) ) |
| 55 |
48 50 54 20
|
limcrecl |
|- ( ph -> W e. RR ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ n e. NN ) -> W e. RR ) |
| 57 |
28
|
nnred |
|- ( ( ph /\ n e. NN ) -> n e. RR ) |
| 58 |
32 33 45 56 10 11 12 57 13 14
|
fourierdlem67 |
|- ( ( ph /\ n e. NN ) -> G : ( -u _pi [,] _pi ) --> RR ) |
| 59 |
58
|
ffvelcdmda |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] _pi ) ) -> ( G ` s ) e. RR ) |
| 60 |
31 59
|
syldan |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( G ` s ) e. RR ) |
| 61 |
21
|
adantr |
|- ( ( ph /\ n e. NN ) -> A e. dom vol ) |
| 62 |
58
|
feqmptd |
|- ( ( ph /\ n e. NN ) -> G = ( s e. ( -u _pi [,] _pi ) |-> ( G ` s ) ) ) |
| 63 |
6
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. ran V ) |
| 64 |
19
|
adantr |
|- ( ( ph /\ n e. NN ) -> Y e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
| 65 |
20
|
adantr |
|- ( ( ph /\ n e. NN ) -> W e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 66 |
4
|
adantr |
|- ( ( ph /\ n e. NN ) -> M e. NN ) |
| 67 |
5
|
adantr |
|- ( ( ph /\ n e. NN ) -> V e. ( P ` M ) ) |
| 68 |
7
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 69 |
8
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) ) |
| 70 |
9
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) ) |
| 71 |
|
fveq2 |
|- ( j = i -> ( V ` j ) = ( V ` i ) ) |
| 72 |
71
|
oveq1d |
|- ( j = i -> ( ( V ` j ) - X ) = ( ( V ` i ) - X ) ) |
| 73 |
72
|
cbvmptv |
|- ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) |
| 74 |
|
eqid |
|- ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` m ) = _pi ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` m ) = _pi ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 75 |
16
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( I |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR ) |
| 76 |
17
|
adantr |
|- ( ( ph /\ n e. NN ) -> B e. ( ( I |` ( -oo (,) X ) ) limCC X ) ) |
| 77 |
18
|
adantr |
|- ( ( ph /\ n e. NN ) -> C e. ( ( I |` ( X (,) +oo ) ) limCC X ) ) |
| 78 |
3 32 63 64 65 10 11 12 57 13 14 66 67 68 69 70 73 74 15 75 76 77
|
fourierdlem88 |
|- ( ( ph /\ n e. NN ) -> G e. L^1 ) |
| 79 |
62 78
|
eqeltrrd |
|- ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] _pi ) |-> ( G ` s ) ) e. L^1 ) |
| 80 |
30 61 59 79
|
iblss |
|- ( ( ph /\ n e. NN ) -> ( s e. A |-> ( G ` s ) ) e. L^1 ) |
| 81 |
60 80
|
itgrecl |
|- ( ( ph /\ n e. NN ) -> S. A ( G ` s ) _d s e. RR ) |
| 82 |
|
pire |
|- _pi e. RR |
| 83 |
82
|
a1i |
|- ( ( ph /\ n e. NN ) -> _pi e. RR ) |
| 84 |
|
pipos |
|- 0 < _pi |
| 85 |
82 84
|
gt0ne0ii |
|- _pi =/= 0 |
| 86 |
85
|
a1i |
|- ( ( ph /\ n e. NN ) -> _pi =/= 0 ) |
| 87 |
81 83 86
|
redivcld |
|- ( ( ph /\ n e. NN ) -> ( S. A ( G ` s ) _d s / _pi ) e. RR ) |
| 88 |
23
|
fvmpt2 |
|- ( ( n e. NN /\ ( S. A ( G ` s ) _d s / _pi ) e. RR ) -> ( E ` n ) = ( S. A ( G ` s ) _d s / _pi ) ) |
| 89 |
28 87 88
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( E ` n ) = ( S. A ( G ` s ) _d s / _pi ) ) |
| 90 |
25
|
recnd |
|- ( ph -> O e. CC ) |
| 91 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 92 |
|
2ne0 |
|- 2 =/= 0 |
| 93 |
92
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 94 |
90 91 93
|
divrecd |
|- ( ph -> ( O / 2 ) = ( O x. ( 1 / 2 ) ) ) |
| 95 |
94
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( O / 2 ) = ( O x. ( 1 / 2 ) ) ) |
| 96 |
27
|
eqcomd |
|- ( ( ph /\ n e. NN ) -> ( 1 / 2 ) = S. A ( ( D ` n ) ` s ) _d s ) |
| 97 |
96
|
oveq2d |
|- ( ( ph /\ n e. NN ) -> ( O x. ( 1 / 2 ) ) = ( O x. S. A ( ( D ` n ) ` s ) _d s ) ) |
| 98 |
95 97
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( O / 2 ) = ( O x. S. A ( ( D ` n ) ` s ) _d s ) ) |
| 99 |
89 98
|
oveq12d |
|- ( ( ph /\ n e. NN ) -> ( ( E ` n ) + ( O / 2 ) ) = ( ( S. A ( G ` s ) _d s / _pi ) + ( O x. S. A ( ( D ` n ) ` s ) _d s ) ) ) |
| 100 |
22
|
sselda |
|- ( ( ph /\ s e. A ) -> s e. ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
| 101 |
100
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> s e. ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
| 102 |
|
eqid |
|- ( ( -u _pi [,] _pi ) \ { 0 } ) = ( ( -u _pi [,] _pi ) \ { 0 } ) |
| 103 |
1 2 44 55 24 10 11 12 13 14 102
|
fourierdlem66 |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi [,] _pi ) \ { 0 } ) ) -> ( G ` s ) = ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) ) |
| 104 |
101 103
|
syldan |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( G ` s ) = ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) ) |
| 105 |
104
|
itgeq2dv |
|- ( ( ph /\ n e. NN ) -> S. A ( G ` s ) _d s = S. A ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) _d s ) |
| 106 |
105
|
oveq1d |
|- ( ( ph /\ n e. NN ) -> ( S. A ( G ` s ) _d s / _pi ) = ( S. A ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) _d s / _pi ) ) |
| 107 |
83
|
recnd |
|- ( ( ph /\ n e. NN ) -> _pi e. CC ) |
| 108 |
1
|
adantr |
|- ( ( ph /\ s e. A ) -> F : RR --> RR ) |
| 109 |
2
|
adantr |
|- ( ( ph /\ s e. A ) -> X e. RR ) |
| 110 |
|
difss |
|- ( ( -u _pi [,] _pi ) \ { 0 } ) C_ ( -u _pi [,] _pi ) |
| 111 |
82
|
renegcli |
|- -u _pi e. RR |
| 112 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
| 113 |
111 82 112
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
| 114 |
110 113
|
sstri |
|- ( ( -u _pi [,] _pi ) \ { 0 } ) C_ RR |
| 115 |
114 100
|
sselid |
|- ( ( ph /\ s e. A ) -> s e. RR ) |
| 116 |
109 115
|
readdcld |
|- ( ( ph /\ s e. A ) -> ( X + s ) e. RR ) |
| 117 |
108 116
|
ffvelcdmd |
|- ( ( ph /\ s e. A ) -> ( F ` ( X + s ) ) e. RR ) |
| 118 |
44 55
|
ifcld |
|- ( ph -> if ( 0 < s , Y , W ) e. RR ) |
| 119 |
118
|
adantr |
|- ( ( ph /\ s e. A ) -> if ( 0 < s , Y , W ) e. RR ) |
| 120 |
117 119
|
resubcld |
|- ( ( ph /\ s e. A ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. RR ) |
| 121 |
120
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. RR ) |
| 122 |
28
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> n e. NN ) |
| 123 |
115
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> s e. RR ) |
| 124 |
24
|
dirkerre |
|- ( ( n e. NN /\ s e. RR ) -> ( ( D ` n ) ` s ) e. RR ) |
| 125 |
122 123 124
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( D ` n ) ` s ) e. RR ) |
| 126 |
121 125
|
remulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) e. RR ) |
| 127 |
104
|
eqcomd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) = ( G ` s ) ) |
| 128 |
127
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) / _pi ) = ( ( G ` s ) / _pi ) ) |
| 129 |
|
picn |
|- _pi e. CC |
| 130 |
129
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> _pi e. CC ) |
| 131 |
126
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) e. CC ) |
| 132 |
85
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> _pi =/= 0 ) |
| 133 |
130 131 130 132
|
div23d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) / _pi ) = ( ( _pi / _pi ) x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) ) |
| 134 |
60
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( G ` s ) e. CC ) |
| 135 |
134 130 132
|
divrec2d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( G ` s ) / _pi ) = ( ( 1 / _pi ) x. ( G ` s ) ) ) |
| 136 |
128 133 135
|
3eqtr3rd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( 1 / _pi ) x. ( G ` s ) ) = ( ( _pi / _pi ) x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) ) |
| 137 |
129 85
|
dividi |
|- ( _pi / _pi ) = 1 |
| 138 |
137
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( _pi / _pi ) = 1 ) |
| 139 |
138
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( _pi / _pi ) x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) = ( 1 x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) ) |
| 140 |
131
|
mullidd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( 1 x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) |
| 141 |
136 139 140
|
3eqtrrd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) = ( ( 1 / _pi ) x. ( G ` s ) ) ) |
| 142 |
141
|
mpteq2dva |
|- ( ( ph /\ n e. NN ) -> ( s e. A |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) = ( s e. A |-> ( ( 1 / _pi ) x. ( G ` s ) ) ) ) |
| 143 |
107 86
|
reccld |
|- ( ( ph /\ n e. NN ) -> ( 1 / _pi ) e. CC ) |
| 144 |
143 60 80
|
iblmulc2 |
|- ( ( ph /\ n e. NN ) -> ( s e. A |-> ( ( 1 / _pi ) x. ( G ` s ) ) ) e. L^1 ) |
| 145 |
142 144
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( s e. A |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) |
| 146 |
107 126 145
|
itgmulc2 |
|- ( ( ph /\ n e. NN ) -> ( _pi x. S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s ) = S. A ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) _d s ) |
| 147 |
146
|
eqcomd |
|- ( ( ph /\ n e. NN ) -> S. A ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) _d s = ( _pi x. S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) |
| 148 |
147
|
oveq1d |
|- ( ( ph /\ n e. NN ) -> ( S. A ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) _d s / _pi ) = ( ( _pi x. S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s ) / _pi ) ) |
| 149 |
126 145
|
itgcl |
|- ( ( ph /\ n e. NN ) -> S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s e. CC ) |
| 150 |
149 107 86
|
divcan3d |
|- ( ( ph /\ n e. NN ) -> ( ( _pi x. S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s ) / _pi ) = S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
| 151 |
106 148 150
|
3eqtrd |
|- ( ( ph /\ n e. NN ) -> ( S. A ( G ` s ) _d s / _pi ) = S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
| 152 |
90
|
adantr |
|- ( ( ph /\ n e. NN ) -> O e. CC ) |
| 153 |
113
|
sseli |
|- ( s e. ( -u _pi [,] _pi ) -> s e. RR ) |
| 154 |
153 124
|
sylan2 |
|- ( ( n e. NN /\ s e. ( -u _pi [,] _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) |
| 155 |
154
|
adantll |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) |
| 156 |
111
|
a1i |
|- ( ( ph /\ n e. NN ) -> -u _pi e. RR ) |
| 157 |
|
ax-resscn |
|- RR C_ CC |
| 158 |
157
|
a1i |
|- ( n e. NN -> RR C_ CC ) |
| 159 |
|
ssid |
|- CC C_ CC |
| 160 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( -u _pi [,] _pi ) -cn-> RR ) C_ ( ( -u _pi [,] _pi ) -cn-> CC ) ) |
| 161 |
158 159 160
|
sylancl |
|- ( n e. NN -> ( ( -u _pi [,] _pi ) -cn-> RR ) C_ ( ( -u _pi [,] _pi ) -cn-> CC ) ) |
| 162 |
|
eqid |
|- ( s e. RR |-> ( ( D ` n ) ` s ) ) = ( s e. RR |-> ( ( D ` n ) ` s ) ) |
| 163 |
24
|
dirkerf |
|- ( n e. NN -> ( D ` n ) : RR --> RR ) |
| 164 |
163
|
feqmptd |
|- ( n e. NN -> ( D ` n ) = ( s e. RR |-> ( ( D ` n ) ` s ) ) ) |
| 165 |
24
|
dirkercncf |
|- ( n e. NN -> ( D ` n ) e. ( RR -cn-> RR ) ) |
| 166 |
164 165
|
eqeltrrd |
|- ( n e. NN -> ( s e. RR |-> ( ( D ` n ) ` s ) ) e. ( RR -cn-> RR ) ) |
| 167 |
113
|
a1i |
|- ( n e. NN -> ( -u _pi [,] _pi ) C_ RR ) |
| 168 |
|
ssid |
|- RR C_ RR |
| 169 |
168
|
a1i |
|- ( n e. NN -> RR C_ RR ) |
| 170 |
162 166 167 169 154
|
cncfmptssg |
|- ( n e. NN -> ( s e. ( -u _pi [,] _pi ) |-> ( ( D ` n ) ` s ) ) e. ( ( -u _pi [,] _pi ) -cn-> RR ) ) |
| 171 |
161 170
|
sseldd |
|- ( n e. NN -> ( s e. ( -u _pi [,] _pi ) |-> ( ( D ` n ) ` s ) ) e. ( ( -u _pi [,] _pi ) -cn-> CC ) ) |
| 172 |
171
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] _pi ) |-> ( ( D ` n ) ` s ) ) e. ( ( -u _pi [,] _pi ) -cn-> CC ) ) |
| 173 |
|
cniccibl |
|- ( ( -u _pi e. RR /\ _pi e. RR /\ ( s e. ( -u _pi [,] _pi ) |-> ( ( D ` n ) ` s ) ) e. ( ( -u _pi [,] _pi ) -cn-> CC ) ) -> ( s e. ( -u _pi [,] _pi ) |-> ( ( D ` n ) ` s ) ) e. L^1 ) |
| 174 |
156 83 172 173
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] _pi ) |-> ( ( D ` n ) ` s ) ) e. L^1 ) |
| 175 |
30 61 155 174
|
iblss |
|- ( ( ph /\ n e. NN ) -> ( s e. A |-> ( ( D ` n ) ` s ) ) e. L^1 ) |
| 176 |
152 125 175
|
itgmulc2 |
|- ( ( ph /\ n e. NN ) -> ( O x. S. A ( ( D ` n ) ` s ) _d s ) = S. A ( O x. ( ( D ` n ) ` s ) ) _d s ) |
| 177 |
151 176
|
oveq12d |
|- ( ( ph /\ n e. NN ) -> ( ( S. A ( G ` s ) _d s / _pi ) + ( O x. S. A ( ( D ` n ) ` s ) _d s ) ) = ( S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s + S. A ( O x. ( ( D ` n ) ` s ) ) _d s ) ) |
| 178 |
25
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> O e. RR ) |
| 179 |
178 125
|
remulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( O x. ( ( D ` n ) ` s ) ) e. RR ) |
| 180 |
152 125 175
|
iblmulc2 |
|- ( ( ph /\ n e. NN ) -> ( s e. A |-> ( O x. ( ( D ` n ) ` s ) ) ) e. L^1 ) |
| 181 |
126 145 179 180
|
itgadd |
|- ( ( ph /\ n e. NN ) -> S. A ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) + ( O x. ( ( D ` n ) ` s ) ) ) _d s = ( S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s + S. A ( O x. ( ( D ` n ) ` s ) ) _d s ) ) |
| 182 |
26
|
eqcomd |
|- ( ( ph /\ s e. A ) -> O = if ( 0 < s , Y , W ) ) |
| 183 |
182
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> O = if ( 0 < s , Y , W ) ) |
| 184 |
183
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( O x. ( ( D ` n ) ` s ) ) = ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) |
| 185 |
184
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) + ( O x. ( ( D ` n ) ` s ) ) ) = ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) + ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) ) |
| 186 |
117
|
recnd |
|- ( ( ph /\ s e. A ) -> ( F ` ( X + s ) ) e. CC ) |
| 187 |
186
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( F ` ( X + s ) ) e. CC ) |
| 188 |
119
|
recnd |
|- ( ( ph /\ s e. A ) -> if ( 0 < s , Y , W ) e. CC ) |
| 189 |
188
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> if ( 0 < s , Y , W ) e. CC ) |
| 190 |
125
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( D ` n ) ` s ) e. CC ) |
| 191 |
187 189 190
|
subdird |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) = ( ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) - ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) ) |
| 192 |
191
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) + ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) = ( ( ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) - ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) + ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) ) |
| 193 |
187 190
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) |
| 194 |
189 190
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) e. CC ) |
| 195 |
193 194
|
npcand |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) - ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) + ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
| 196 |
185 192 195
|
3eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) + ( O x. ( ( D ` n ) ` s ) ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
| 197 |
196
|
itgeq2dv |
|- ( ( ph /\ n e. NN ) -> S. A ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) + ( O x. ( ( D ` n ) ` s ) ) ) _d s = S. A ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
| 198 |
181 197
|
eqtr3d |
|- ( ( ph /\ n e. NN ) -> ( S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s + S. A ( O x. ( ( D ` n ) ` s ) ) _d s ) = S. A ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
| 199 |
99 177 198
|
3eqtrd |
|- ( ( ph /\ n e. NN ) -> ( ( E ` n ) + ( O / 2 ) ) = S. A ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |