| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lptioo1cn.1 |
|- J = ( TopOpen ` CCfld ) |
| 2 |
|
lptioo1cn.2 |
|- ( ph -> B e. RR* ) |
| 3 |
|
lptioo1cn.3 |
|- ( ph -> A e. RR ) |
| 4 |
|
lptioo1cn.4 |
|- ( ph -> A < B ) |
| 5 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 6 |
5 3 2 4
|
lptioo1 |
|- ( ph -> A e. ( ( limPt ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) |
| 7 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 8 |
7
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 9 |
8
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
| 10 |
|
ax-resscn |
|- RR C_ CC |
| 11 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
| 12 |
10 11
|
sseqtri |
|- RR C_ U. ( TopOpen ` CCfld ) |
| 13 |
12
|
a1i |
|- ( ph -> RR C_ U. ( TopOpen ` CCfld ) ) |
| 14 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 15 |
14
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
| 16 |
|
eqid |
|- U. ( TopOpen ` CCfld ) = U. ( TopOpen ` CCfld ) |
| 17 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 18 |
16 17
|
restlp |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ RR C_ U. ( TopOpen ` CCfld ) /\ ( A (,) B ) C_ RR ) -> ( ( limPt ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) i^i RR ) ) |
| 19 |
9 13 15 18
|
syl3anc |
|- ( ph -> ( ( limPt ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) i^i RR ) ) |
| 20 |
6 19
|
eleqtrd |
|- ( ph -> A e. ( ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) i^i RR ) ) |
| 21 |
|
elin |
|- ( A e. ( ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) i^i RR ) <-> ( A e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) /\ A e. RR ) ) |
| 22 |
20 21
|
sylib |
|- ( ph -> ( A e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) /\ A e. RR ) ) |
| 23 |
22
|
simpld |
|- ( ph -> A e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) ) |
| 24 |
1
|
eqcomi |
|- ( TopOpen ` CCfld ) = J |
| 25 |
24
|
fveq2i |
|- ( limPt ` ( TopOpen ` CCfld ) ) = ( limPt ` J ) |
| 26 |
25
|
fveq1i |
|- ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A (,) B ) ) = ( ( limPt ` J ) ` ( A (,) B ) ) |
| 27 |
23 26
|
eleqtrdi |
|- ( ph -> A e. ( ( limPt ` J ) ` ( A (,) B ) ) ) |