| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dirkercncf.d |
|
| 2 |
1
|
dirkerf |
|
| 3 |
|
ax-resscn |
|
| 4 |
3
|
a1i |
|
| 5 |
2 4
|
fssd |
|
| 6 |
5
|
ad2antrr |
|
| 7 |
|
oveq1 |
|
| 8 |
7
|
eqeq1d |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
fveq2d |
|
| 11 |
|
oveq1 |
|
| 12 |
11
|
fveq2d |
|
| 13 |
12
|
oveq2d |
|
| 14 |
10 13
|
oveq12d |
|
| 15 |
8 14
|
ifbieq2d |
|
| 16 |
15
|
cbvmptv |
|
| 17 |
16
|
mpteq2i |
|
| 18 |
1 17
|
eqtri |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
|
simpll |
|
| 24 |
|
simplr |
|
| 25 |
|
simpr |
|
| 26 |
18 19 20 21 22 23 24 25
|
dirkercncflem3 |
|
| 27 |
3
|
jctl |
|
| 28 |
27
|
ad2antlr |
|
| 29 |
|
eqid |
|
| 30 |
|
tgioo4 |
|
| 31 |
29 30
|
cnplimc |
|
| 32 |
28 31
|
syl |
|
| 33 |
6 26 32
|
mpbir2and |
|
| 34 |
29
|
cnfldtop |
|
| 35 |
34
|
a1i |
|
| 36 |
2
|
ad2antrr |
|
| 37 |
3
|
a1i |
|
| 38 |
|
retopon |
|
| 39 |
38
|
toponunii |
|
| 40 |
29
|
cnfldtopon |
|
| 41 |
40
|
toponunii |
|
| 42 |
39 41
|
cnprest2 |
|
| 43 |
35 36 37 42
|
syl3anc |
|
| 44 |
33 43
|
mpbid |
|
| 45 |
30
|
eqcomi |
|
| 46 |
45
|
a1i |
|
| 47 |
46
|
oveq2d |
|
| 48 |
47
|
fveq1d |
|
| 49 |
44 48
|
eleqtrd |
|
| 50 |
|
simpll |
|
| 51 |
|
simplr |
|
| 52 |
|
neqne |
|
| 53 |
52
|
adantl |
|
| 54 |
|
eqid |
|
| 55 |
|
eqid |
|
| 56 |
|
eqid |
|
| 57 |
|
eqid |
|
| 58 |
18 50 51 53 54 55 56 57
|
dirkercncflem4 |
|
| 59 |
49 58
|
pm2.61dan |
|
| 60 |
59
|
ralrimiva |
|
| 61 |
|
cncnp |
|
| 62 |
38 38 61
|
mp2an |
|
| 63 |
2 60 62
|
sylanbrc |
|
| 64 |
29 30 30
|
cncfcn |
|
| 65 |
3 3 64
|
mp2an |
|
| 66 |
63 65
|
eleqtrrdi |
|