Metamath Proof Explorer


Theorem dirkercncflem3

Description: The Dirichlet Kernel is continuous at Y points that are multiples of ( 2 x. _pi ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dirkercncflem3.d D=nyifymod2π=02n+12πsinn+12y2πsiny2
dirkercncflem3.a A=Yπ
dirkercncflem3.b B=Y+π
dirkercncflem3.f F=yABsinn+12y2πsiny2
dirkercncflem3.g G=yAB2πsiny2
dirkercncflem3.n φN
dirkercncflem3.yr φY
dirkercncflem3.yod φYmod2π=0
Assertion dirkercncflem3 φDNYDNlimY

Proof

Step Hyp Ref Expression
1 dirkercncflem3.d D=nyifymod2π=02n+12πsinn+12y2πsiny2
2 dirkercncflem3.a A=Yπ
3 dirkercncflem3.b B=Y+π
4 dirkercncflem3.f F=yABsinn+12y2πsiny2
5 dirkercncflem3.g G=yAB2πsiny2
6 dirkercncflem3.n φN
7 dirkercncflem3.yr φY
8 dirkercncflem3.yod φYmod2π=0
9 oveq2 w=yN+12w=N+12y
10 9 fveq2d w=ysinN+12w=sinN+12y
11 10 cbvmptv wABYsinN+12w=yABYsinN+12y
12 fvoveq1 w=ysinw2=siny2
13 12 oveq2d w=y2πsinw2=2πsiny2
14 13 cbvmptv wABY2πsinw2=yABY2πsiny2
15 2 3 7 8 dirkercncflem1 φYAByABYsiny20cosy20
16 15 simprd φyABYsiny20cosy20
17 r19.26 yABYsiny20cosy20yABYsiny20yABYcosy20
18 16 17 sylib φyABYsiny20yABYcosy20
19 18 simpld φyABYsiny20
20 19 r19.21bi φyABYsiny20
21 9 fveq2d w=ycosN+12w=cosN+12y
22 21 oveq2d w=yN+12cosN+12w=N+12cosN+12y
23 22 cbvmptv wABYN+12cosN+12w=yABYN+12cosN+12y
24 fvoveq1 w=ycosw2=cosy2
25 24 oveq2d w=yπcosw2=πcosy2
26 25 cbvmptv wABYπcosw2=yABYπcosy2
27 eqid zABN+12cosN+12zπcosz2=zABN+12cosN+12zπcosz2
28 15 simpld φYAB
29 18 simprd φyABYcosy20
30 29 r19.21bi φyABYcosy20
31 1 11 14 20 23 26 27 6 28 8 30 dirkercncflem2 φDNYDNABYlimY
32 1 dirkerf NDN:
33 6 32 syl φDN:
34 ax-resscn
35 34 a1i φ
36 33 35 fssd φDN:
37 ioossre AB
38 37 a1i φAB
39 38 ssdifssd φABY
40 eqid TopOpenfld=TopOpenfld
41 eqid TopOpenfld𝑡Y=TopOpenfld𝑡Y
42 iooretop ABtopGenran.
43 retop topGenran.Top
44 uniretop =topGenran.
45 44 isopn3 topGenran.TopABABtopGenran.inttopGenran.AB=AB
46 43 38 45 sylancr φABtopGenran.inttopGenran.AB=AB
47 42 46 mpbii φinttopGenran.AB=AB
48 28 47 eleqtrrd φYinttopGenran.AB
49 40 tgioo2 topGenran.=TopOpenfld𝑡
50 49 a1i φtopGenran.=TopOpenfld𝑡
51 50 fveq2d φinttopGenran.=intTopOpenfld𝑡
52 51 fveq1d φinttopGenran.AB=intTopOpenfld𝑡AB
53 48 52 eleqtrd φYintTopOpenfld𝑡AB
54 7 snssd φY
55 ssequn2 YY=
56 54 55 sylib φY=
57 56 oveq2d φTopOpenfld𝑡Y=TopOpenfld𝑡
58 57 fveq2d φintTopOpenfld𝑡Y=intTopOpenfld𝑡
59 uncom ABYY=YABY
60 28 snssd φYAB
61 undif YABYABY=AB
62 60 61 sylib φYABY=AB
63 59 62 eqtrid φABYY=AB
64 58 63 fveq12d φintTopOpenfld𝑡YABYY=intTopOpenfld𝑡AB
65 53 64 eleqtrrd φYintTopOpenfld𝑡YABYY
66 36 39 35 40 41 65 limcres φDNABYlimY=DNlimY
67 31 66 eleqtrd φDNYDNlimY