Metamath Proof Explorer


Theorem dirkercncflem2

Description: Lemma used to prove that the Dirichlet Kernel is continuous at Y points that are multiples of ( 2 x. _pi ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dirkercncflem2.d D=nyifymod2π=02n+12πsinn+12y2πsiny2
dirkercncflem2.f F=yABYsinN+12y
dirkercncflem2.g G=yABY2πsiny2
dirkercncflem2.yne0 φyABYsiny20
dirkercncflem2.h H=yABYN+12cosN+12y
dirkercncflem2.i I=yABYπcosy2
dirkercncflem2.l L=wABN+12cosN+12wπcosw2
dirkercncflem2.n φN
dirkercncflem2.y φYAB
dirkercncflem2.ymod φYmod2π=0
dirkercncflem2.11 φyABYcosy20
Assertion dirkercncflem2 φDNYDNABYlimY

Proof

Step Hyp Ref Expression
1 dirkercncflem2.d D=nyifymod2π=02n+12πsinn+12y2πsiny2
2 dirkercncflem2.f F=yABYsinN+12y
3 dirkercncflem2.g G=yABY2πsiny2
4 dirkercncflem2.yne0 φyABYsiny20
5 dirkercncflem2.h H=yABYN+12cosN+12y
6 dirkercncflem2.i I=yABYπcosy2
7 dirkercncflem2.l L=wABN+12cosN+12wπcosw2
8 dirkercncflem2.n φN
9 dirkercncflem2.y φYAB
10 dirkercncflem2.ymod φYmod2π=0
11 dirkercncflem2.11 φyABYcosy20
12 difss ABYAB
13 ioossre AB
14 12 13 sstri ABY
15 14 a1i φABY
16 8 adantr φyABYN
17 16 nnred φyABYN
18 halfre 12
19 18 a1i φyABY12
20 17 19 readdcld φyABYN+12
21 15 sselda φyABYy
22 20 21 remulcld φyABYN+12y
23 22 resincld φyABYsinN+12y
24 23 2 fmptd φF:ABY
25 2re 2
26 pire π
27 25 26 remulcli 2π
28 27 a1i φyABY2π
29 21 rehalfcld φyABYy2
30 29 resincld φyABYsiny2
31 28 30 remulcld φyABY2πsiny2
32 31 3 fmptd φG:ABY
33 iooretop ABtopGenran.
34 33 a1i φABtopGenran.
35 eqid ABY=ABY
36 2 a1i φF=yABYsinN+12y
37 36 oveq2d φDF=dyABYsinN+12ydy
38 resmpt ABYysinN+12yABY=yABYsinN+12y
39 14 38 ax-mp ysinN+12yABY=yABYsinN+12y
40 39 eqcomi yABYsinN+12y=ysinN+12yABY
41 40 a1i φyABYsinN+12y=ysinN+12yABY
42 41 oveq2d φdyABYsinN+12ydy=DysinN+12yABY
43 ax-resscn
44 43 a1i φ
45 8 nncnd φN
46 halfcn 12
47 46 a1i φ12
48 45 47 addcld φN+12
49 48 adantr φyN+12
50 44 sselda φyy
51 49 50 mulcld φyN+12y
52 51 sincld φysinN+12y
53 eqid ysinN+12y=ysinN+12y
54 52 53 fmptd φysinN+12y:
55 ssid
56 55 14 pm3.2i ABY
57 56 a1i φABY
58 eqid TopOpenfld=TopOpenfld
59 58 tgioo2 topGenran.=TopOpenfld𝑡
60 58 59 dvres ysinN+12y:ABYDysinN+12yABY=dysinN+12ydyinttopGenran.ABY
61 44 54 57 60 syl21anc φDysinN+12yABY=dysinN+12ydyinttopGenran.ABY
62 retop topGenran.Top
63 rehaus topGenran.Haus
64 9 elioored φY
65 uniretop =topGenran.
66 65 sncld topGenran.HausYYClsdtopGenran.
67 63 64 66 sylancr φYClsdtopGenran.
68 65 difopn ABtopGenran.YClsdtopGenran.ABYtopGenran.
69 33 67 68 sylancr φABYtopGenran.
70 isopn3i topGenran.TopABYtopGenran.inttopGenran.ABY=ABY
71 62 69 70 sylancr φinttopGenran.ABY=ABY
72 71 reseq2d φdysinN+12ydyinttopGenran.ABY=dysinN+12ydyABY
73 reelprrecn
74 73 a1i φ
75 48 adantr φyN+12
76 simpr φyy
77 75 76 mulcld φyN+12y
78 77 sincld φysinN+12y
79 eqid ysinN+12y=ysinN+12y
80 78 79 fmptd φysinN+12y:
81 ssid
82 81 a1i φ
83 dvsinax N+12dysinN+12ydy=yN+12cosN+12y
84 48 83 syl φdysinN+12ydy=yN+12cosN+12y
85 84 dmeqd φdomdysinN+12ydy=domyN+12cosN+12y
86 eqid yN+12cosN+12y=yN+12cosN+12y
87 77 coscld φycosN+12y
88 75 87 mulcld φyN+12cosN+12y
89 86 88 dmmptd φdomyN+12cosN+12y=
90 85 89 eqtrd φdomdysinN+12ydy=
91 43 90 sseqtrrid φdomdysinN+12ydy
92 dvres3 ysinN+12y:domdysinN+12ydyDysinN+12y=dysinN+12ydy
93 74 80 82 91 92 syl22anc φDysinN+12y=dysinN+12ydy
94 resmpt ysinN+12y=ysinN+12y
95 43 94 mp1i φysinN+12y=ysinN+12y
96 95 oveq2d φDysinN+12y=dysinN+12ydy
97 84 reseq1d φdysinN+12ydy=yN+12cosN+12y
98 resmpt yN+12cosN+12y=yN+12cosN+12y
99 43 98 ax-mp yN+12cosN+12y=yN+12cosN+12y
100 97 99 eqtrdi φdysinN+12ydy=yN+12cosN+12y
101 93 96 100 3eqtr3d φdysinN+12ydy=yN+12cosN+12y
102 101 reseq1d φdysinN+12ydyABY=yN+12cosN+12yABY
103 resmpt ABYyN+12cosN+12yABY=yABYN+12cosN+12y
104 14 103 mp1i φyN+12cosN+12yABY=yABYN+12cosN+12y
105 72 102 104 3eqtrd φdysinN+12ydyinttopGenran.ABY=yABYN+12cosN+12y
106 42 61 105 3eqtrd φdyABYsinN+12ydy=yABYN+12cosN+12y
107 5 a1i φH=yABYN+12cosN+12y
108 107 eqcomd φyABYN+12cosN+12y=H
109 37 106 108 3eqtrd φDF=H
110 109 dmeqd φdomF=domH
111 21 recnd φyABYy
112 111 88 syldan φyABYN+12cosN+12y
113 5 112 dmmptd φdomH=ABY
114 110 113 eqtr2d φABY=domF
115 eqimss ABY=domFABYdomF
116 114 115 syl φABYdomF
117 6 a1i φI=yABYπcosy2
118 resmpt ABYy2πsiny2ABY=yABY2πsiny2
119 14 118 ax-mp y2πsiny2ABY=yABY2πsiny2
120 119 eqcomi yABY2πsiny2=y2πsiny2ABY
121 120 oveq2i dyABY2πsiny2dy=Dy2πsiny2ABY
122 121 a1i φdyABY2πsiny2dy=Dy2πsiny2ABY
123 2cn 2
124 picn π
125 123 124 mulcli 2π
126 125 a1i φy2π
127 50 halfcld φyy2
128 127 sincld φysiny2
129 126 128 mulcld φy2πsiny2
130 eqid y2πsiny2=y2πsiny2
131 129 130 fmptd φy2πsiny2:
132 58 59 dvres y2πsiny2:ABYDy2πsiny2ABY=dy2πsiny2dyinttopGenran.ABY
133 44 131 57 132 syl21anc φDy2πsiny2ABY=dy2πsiny2dyinttopGenran.ABY
134 71 reseq2d φdy2πsiny2dyinttopGenran.ABY=dy2πsiny2dyABY
135 43 sseli yy
136 1cnd y1
137 2cnd y2
138 id yy
139 2ne0 20
140 139 a1i y20
141 136 137 138 140 div13d y12y=y21
142 halfcl yy2
143 142 mulridd yy21=y2
144 141 143 eqtrd y12y=y2
145 144 fveq2d ysin12y=siny2
146 145 oveq2d y2πsin12y=2πsiny2
147 146 eqcomd y2πsiny2=2πsin12y
148 135 147 syl y2πsiny2=2πsin12y
149 148 adantl φy2πsiny2=2πsin12y
150 149 mpteq2dva φy2πsiny2=y2πsin12y
151 150 oveq2d φdy2πsiny2dy=dy2πsin12ydy
152 125 a1i φy2π
153 46 a1i φy12
154 153 76 mulcld φy12y
155 154 sincld φysin12y
156 152 155 mulcld φy2πsin12y
157 eqid y2πsin12y=y2πsin12y
158 156 157 fmptd φy2πsin12y:
159 2cnd φ2
160 124 a1i φπ
161 159 160 mulcld φ2π
162 dvasinbx 2π12dy2πsin12ydy=y2π12cos12y
163 161 46 162 sylancl φdy2πsin12ydy=y2π12cos12y
164 2cnd φy2
165 124 a1i φyπ
166 164 165 153 mul32d φy2π12=212π
167 139 a1i φy20
168 164 167 recidd φy212=1
169 168 oveq1d φy212π=1π
170 165 mullidd φy1π=π
171 166 169 170 3eqtrd φy2π12=π
172 144 fveq2d ycos12y=cosy2
173 172 adantl φycos12y=cosy2
174 171 173 oveq12d φy2π12cos12y=πcosy2
175 174 mpteq2dva φy2π12cos12y=yπcosy2
176 163 175 eqtrd φdy2πsin12ydy=yπcosy2
177 176 dmeqd φdomdy2πsin12ydy=domyπcosy2
178 eqid yπcosy2=yπcosy2
179 76 halfcld φyy2
180 179 coscld φycosy2
181 165 180 mulcld φyπcosy2
182 178 181 dmmptd φdomyπcosy2=
183 177 182 eqtrd φdomdy2πsin12ydy=
184 43 183 sseqtrrid φdomdy2πsin12ydy
185 dvres3 y2πsin12y:domdy2πsin12ydyDy2πsin12y=dy2πsin12ydy
186 74 158 82 184 185 syl22anc φDy2πsin12y=dy2πsin12ydy
187 resmpt y2πsin12y=y2πsin12y
188 43 187 mp1i φy2πsin12y=y2πsin12y
189 188 oveq2d φDy2πsin12y=dy2πsin12ydy
190 176 reseq1d φdy2πsin12ydy=yπcosy2
191 186 189 190 3eqtr3d φdy2πsin12ydy=yπcosy2
192 resmpt yπcosy2=yπcosy2
193 43 192 ax-mp yπcosy2=yπcosy2
194 191 193 eqtrdi φdy2πsin12ydy=yπcosy2
195 151 194 eqtrd φdy2πsiny2dy=yπcosy2
196 195 reseq1d φdy2πsiny2dyABY=yπcosy2ABY
197 15 resmptd φyπcosy2ABY=yABYπcosy2
198 134 196 197 3eqtrd φdy2πsiny2dyinttopGenran.ABY=yABYπcosy2
199 122 133 198 3eqtrd φdyABY2πsiny2dy=yABYπcosy2
200 199 eqcomd φyABYπcosy2=dyABY2πsiny2dy
201 3 a1i φG=yABY2πsiny2
202 201 oveq2d φDG=dyABY2πsiny2dy
203 202 eqcomd φdyABY2πsiny2dy=DG
204 117 200 203 3eqtrrd φDG=I
205 204 dmeqd φdomG=domI
206 111 181 syldan φyABYπcosy2
207 6 206 dmmptd φdomI=ABY
208 205 207 eqtr2d φABY=domG
209 eqimss ABY=domGABYdomG
210 208 209 syl φABYdomG
211 111 77 syldan φyABYN+12y
212 211 ralrimiva φyABYN+12y
213 eqid yABYN+12y=yABYN+12y
214 213 fnmpt yABYN+12yyABYN+12yFnABY
215 212 214 syl φyABYN+12yFnABY
216 eqidd φwABYyABYN+12y=yABYN+12y
217 simpr φwABYy=wy=w
218 217 oveq2d φwABYy=wN+12y=N+12w
219 simpr φwABYwABY
220 45 adantr φwABYN
221 1cnd φwABY1
222 221 halfcld φwABY12
223 220 222 addcld φwABYN+12
224 eldifi wABYwAB
225 224 elioored wABYw
226 225 recnd wABYw
227 226 adantl φwABYw
228 223 227 mulcld φwABYN+12w
229 216 218 219 228 fvmptd φwABYyABYN+12yw=N+12w
230 eleq1w y=wyABYwABY
231 230 anbi2d y=wφyABYφwABY
232 oveq1 y=wymod2π=wmod2π
233 232 neeq1d y=wymod2π0wmod2π0
234 231 233 imbi12d y=wφyABYymod2π0φwABYwmod2π0
235 eldifi yABYyAB
236 elioore yABy
237 235 236 135 3syl yABYy
238 2cnd yABY2
239 124 a1i yABYπ
240 139 a1i yABY20
241 0re 0
242 pipos 0<π
243 241 242 gtneii π0
244 243 a1i yABYπ0
245 237 238 239 240 244 divdiv1d yABYy2π=y2π
246 245 eqcomd yABYy2π=y2π
247 246 adantl φyABYy2π=y2π
248 4 neneqd φyABY¬siny2=0
249 111 halfcld φyABYy2
250 sineq0 y2siny2=0y2π
251 249 250 syl φyABYsiny2=0y2π
252 248 251 mtbid φyABY¬y2π
253 247 252 eqneltrd φyABY¬y2π
254 2rp 2+
255 pirp π+
256 rpmulcl 2+π+2π+
257 254 255 256 mp2an 2π+
258 mod0 y2π+ymod2π=0y2π
259 21 257 258 sylancl φyABYymod2π=0y2π
260 253 259 mtbird φyABY¬ymod2π=0
261 260 neqned φyABYymod2π0
262 234 261 chvarvv φwABYwmod2π0
263 262 neneqd φwABY¬wmod2π=0
264 simpll φwABYN+12w=N+12Yφ
265 simpr φwABYN+12w=N+12YN+12w=N+12Y
266 226 ad2antlr φwABYN+12w=N+12Yw
267 64 recnd φY
268 267 ad2antrr φwABYN+12w=N+12YY
269 0red φ0
270 8 nnred φN
271 1red φ1
272 271 rehalfcld φ12
273 270 272 readdcld φN+12
274 8 nngt0d φ0<N
275 254 a1i φ2+
276 275 rpreccld φ12+
277 270 276 ltaddrpd φN<N+12
278 269 270 273 274 277 lttrd φ0<N+12
279 278 gt0ne0d φN+120
280 48 279 jca φN+12N+120
281 280 ad2antrr φwABYN+12w=N+12YN+12N+120
282 mulcan wYN+12N+120N+12w=N+12Yw=Y
283 266 268 281 282 syl3anc φwABYN+12w=N+12YN+12w=N+12Yw=Y
284 265 283 mpbid φwABYN+12w=N+12Yw=Y
285 oveq1 w=Ywmod2π=Ymod2π
286 285 10 sylan9eqr φw=Ywmod2π=0
287 264 284 286 syl2anc φwABYN+12w=N+12Ywmod2π=0
288 263 287 mtand φwABY¬N+12w=N+12Y
289 48 267 mulcld φN+12Y
290 289 adantr φwABYN+12Y
291 elsn2g N+12YN+12wN+12YN+12w=N+12Y
292 290 291 syl φwABYN+12wN+12YN+12w=N+12Y
293 288 292 mtbird φwABY¬N+12wN+12Y
294 228 293 eldifd φwABYN+12wN+12Y
295 229 294 eqeltrd φwABYyABYN+12ywN+12Y
296 sinf sin:
297 296 fdmi domsin=
298 297 eqcomi =domsin
299 298 a1i φwABY=domsin
300 299 difeq1d φwABYN+12Y=domsinN+12Y
301 295 300 eleqtrd φwABYyABYN+12ywdomsinN+12Y
302 301 ralrimiva φwABYyABYN+12ywdomsinN+12Y
303 fnfvrnss yABYN+12yFnABYwABYyABYN+12ywdomsinN+12YranyABYN+12ydomsinN+12Y
304 215 302 303 syl2anc φranyABYN+12ydomsinN+12Y
305 uncom ABYY=YABY
306 305 a1i φABYY=YABY
307 9 snssd φYAB
308 undif YABYABY=AB
309 307 308 sylib φYABY=AB
310 306 309 eqtrd φABYY=AB
311 310 mpteq1d φwABYYifw=YN+12YyABYN+12yw=wABifw=YN+12YyABYN+12yw
312 iftrue w=Yifw=YN+12YyABYN+12yw=N+12Y
313 oveq2 w=YN+12w=N+12Y
314 312 313 eqtr4d w=Yifw=YN+12YyABYN+12yw=N+12w
315 314 adantl φwABw=Yifw=YN+12YyABYN+12yw=N+12w
316 iffalse ¬w=Yifw=YN+12YyABYN+12yw=yABYN+12yw
317 316 adantl φwAB¬w=Yifw=YN+12YyABYN+12yw=yABYN+12yw
318 eqidd φwAB¬w=YyABYN+12y=yABYN+12y
319 oveq2 y=wN+12y=N+12w
320 319 adantl φwAB¬w=Yy=wN+12y=N+12w
321 simpl wAB¬w=YwAB
322 id ¬w=Y¬w=Y
323 velsn wYw=Y
324 322 323 sylnibr ¬w=Y¬wY
325 324 adantl wAB¬w=Y¬wY
326 321 325 eldifd wAB¬w=YwABY
327 326 adantll φwAB¬w=YwABY
328 48 adantr φwABN+12
329 elioore wABw
330 329 recnd wABw
331 330 adantl φwABw
332 328 331 mulcld φwABN+12w
333 332 adantr φwAB¬w=YN+12w
334 318 320 327 333 fvmptd φwAB¬w=YyABYN+12yw=N+12w
335 317 334 eqtrd φwAB¬w=Yifw=YN+12YyABYN+12yw=N+12w
336 315 335 pm2.61dan φwABifw=YN+12YyABYN+12yw=N+12w
337 336 mpteq2dva φwABifw=YN+12YyABYN+12yw=wABN+12w
338 ioosscn AB
339 resmpt ABwN+12wAB=wABN+12w
340 338 339 ax-mp wN+12wAB=wABN+12w
341 eqid wN+12w=wN+12w
342 341 mulc1cncf N+12wN+12w:cn
343 48 342 syl φwN+12w:cn
344 58 cnfldtop TopOpenfldTop
345 unicntop =TopOpenfld
346 345 restid TopOpenfldTopTopOpenfld𝑡=TopOpenfld
347 344 346 ax-mp TopOpenfld𝑡=TopOpenfld
348 347 eqcomi TopOpenfld=TopOpenfld𝑡
349 58 348 348 cncfcn cn=TopOpenfldCnTopOpenfld
350 81 82 349 sylancr φcn=TopOpenfldCnTopOpenfld
351 343 350 eleqtrd φwN+12wTopOpenfldCnTopOpenfld
352 13 44 sstrid φAB
353 345 cnrest wN+12wTopOpenfldCnTopOpenfldABwN+12wABTopOpenfld𝑡ABCnTopOpenfld
354 351 352 353 syl2anc φwN+12wABTopOpenfld𝑡ABCnTopOpenfld
355 340 354 eqeltrrid φwABN+12wTopOpenfld𝑡ABCnTopOpenfld
356 58 cnfldtopon TopOpenfldTopOn
357 resttopon TopOpenfldTopOnABTopOpenfld𝑡ABTopOnAB
358 356 352 357 sylancr φTopOpenfld𝑡ABTopOnAB
359 cncnp TopOpenfld𝑡ABTopOnABTopOpenfldTopOnwABN+12wTopOpenfld𝑡ABCnTopOpenfldwABN+12w:AByABwABN+12wTopOpenfld𝑡ABCnPTopOpenfldy
360 358 356 359 sylancl φwABN+12wTopOpenfld𝑡ABCnTopOpenfldwABN+12w:AByABwABN+12wTopOpenfld𝑡ABCnPTopOpenfldy
361 355 360 mpbid φwABN+12w:AByABwABN+12wTopOpenfld𝑡ABCnPTopOpenfldy
362 361 simprd φyABwABN+12wTopOpenfld𝑡ABCnPTopOpenfldy
363 fveq2 y=YTopOpenfld𝑡ABCnPTopOpenfldy=TopOpenfld𝑡ABCnPTopOpenfldY
364 363 eleq2d y=YwABN+12wTopOpenfld𝑡ABCnPTopOpenfldywABN+12wTopOpenfld𝑡ABCnPTopOpenfldY
365 364 rspccva yABwABN+12wTopOpenfld𝑡ABCnPTopOpenfldyYABwABN+12wTopOpenfld𝑡ABCnPTopOpenfldY
366 362 9 365 syl2anc φwABN+12wTopOpenfld𝑡ABCnPTopOpenfldY
367 337 366 eqeltrd φwABifw=YN+12YyABYN+12ywTopOpenfld𝑡ABCnPTopOpenfldY
368 310 eqcomd φAB=ABYY
369 368 oveq2d φTopOpenfld𝑡AB=TopOpenfld𝑡ABYY
370 369 oveq1d φTopOpenfld𝑡ABCnPTopOpenfld=TopOpenfld𝑡ABYYCnPTopOpenfld
371 370 fveq1d φTopOpenfld𝑡ABCnPTopOpenfldY=TopOpenfld𝑡ABYYCnPTopOpenfldY
372 367 371 eleqtrd φwABifw=YN+12YyABYN+12ywTopOpenfld𝑡ABYYCnPTopOpenfldY
373 311 372 eqeltrd φwABYYifw=YN+12YyABYN+12ywTopOpenfld𝑡ABYYCnPTopOpenfldY
374 eqid TopOpenfld𝑡ABYY=TopOpenfld𝑡ABYY
375 eqid wABYYifw=YN+12YyABYN+12yw=wABYYifw=YN+12YyABYN+12yw
376 211 213 fmptd φyABYN+12y:ABY
377 15 43 sstrdi φABY
378 374 58 375 376 377 267 ellimc φN+12YyABYN+12ylimYwABYYifw=YN+12YyABYN+12ywTopOpenfld𝑡ABYYCnPTopOpenfldY
379 373 378 mpbird φN+12YyABYN+12ylimY
380 139 a1i φ20
381 243 a1i φπ0
382 159 160 380 381 mulne0d φ2π0
383 267 161 382 divcan1d φY2π2π=Y
384 383 eqcomd φY=Y2π2π
385 384 oveq2d φN+12Y=N+12Y2π2π
386 385 fveq2d φsinN+12Y=sinN+12Y2π2π
387 267 161 382 divcld φY2π
388 48 387 161 mul12d φN+12Y2π2π=Y2πN+122π
389 48 159 160 mulassd φN+122π=N+122π
390 389 eqcomd φN+122π=N+122π
391 390 oveq2d φY2πN+122π=Y2πN+122π
392 45 47 159 adddird φN+122= N2+122
393 159 380 recid2d φ122=1
394 393 oveq2d φ N2+122= N2+1
395 392 394 eqtrd φN+122= N2+1
396 395 oveq1d φN+122π= N2+1π
397 396 oveq2d φY2πN+122π=Y2π N2+1π
398 388 391 397 3eqtrd φN+12Y2π2π=Y2π N2+1π
399 45 159 mulcld φ N2
400 1cnd φ1
401 399 400 addcld φ N2+1
402 387 401 160 mulassd φY2π N2+1π=Y2π N2+1π
403 398 402 eqtr4d φN+12Y2π2π=Y2π N2+1π
404 403 fveq2d φsinN+12Y2π2π=sinY2π N2+1π
405 mod0 Y2π+Ymod2π=0Y2π
406 64 257 405 sylancl φYmod2π=0Y2π
407 10 406 mpbid φY2π
408 8 nnzd φN
409 2z 2
410 409 a1i φ2
411 408 410 zmulcld φ N2
412 411 peano2zd φ N2+1
413 407 412 zmulcld φY2π N2+1
414 sinkpi Y2π N2+1sinY2π N2+1π=0
415 413 414 syl φsinY2π N2+1π=0
416 386 404 415 3eqtrd φsinN+12Y=0
417 sincn sin:cn
418 417 a1i φsin:cn
419 418 289 cnlimci φsinN+12YsinlimN+12Y
420 416 419 eqeltrrd φ0sinlimN+12Y
421 304 379 420 limccog φ0sinyABYN+12ylimY
422 2 a1i φwABYF=yABYsinN+12y
423 218 fveq2d φwABYy=wsinN+12y=sinN+12w
424 228 sincld φwABYsinN+12w
425 422 423 219 424 fvmptd φwABYFw=sinN+12w
426 229 fveq2d φwABYsinyABYN+12yw=sinN+12w
427 425 426 eqtr4d φwABYFw=sinyABYN+12yw
428 427 mpteq2dva φwABYFw=wABYsinyABYN+12yw
429 24 feqmptd φF=wABYFw
430 fcompt sin:yABYN+12y:ABYsinyABYN+12y=wABYsinyABYN+12yw
431 296 376 430 sylancr φsinyABYN+12y=wABYsinyABYN+12yw
432 428 429 431 3eqtr4rd φsinyABYN+12y=F
433 432 oveq1d φsinyABYN+12ylimY=FlimY
434 421 433 eleqtrd φ0FlimY
435 simpr φwABw=Yw=Y
436 435 iftrued φwABw=Yifw=Y0Gw=0
437 267 159 161 380 382 divdiv32d φY22π=Y2π2
438 437 oveq1d φY22π2π=Y2π22π
439 267 halfcld φY2
440 439 161 382 divcan1d φY22π2π=Y2
441 387 159 161 380 div32d φY2π22π=Y2π2π2
442 160 159 380 divcan3d φ2π2=π
443 442 oveq2d φY2π2π2=Y2ππ
444 441 443 eqtrd φY2π22π=Y2ππ
445 438 440 444 3eqtr3d φY2=Y2ππ
446 445 fveq2d φsinY2=sinY2ππ
447 sinkpi Y2πsinY2ππ=0
448 407 447 syl φsinY2ππ=0
449 446 448 eqtrd φsinY2=0
450 449 oveq2d φ2πsinY2=2π0
451 161 mul01d φ2π0=0
452 450 451 eqtrd φ2πsinY2=0
453 452 eqcomd φ0=2πsinY2
454 453 ad2antrr φwABw=Y0=2πsinY2
455 fvoveq1 w=Ysinw2=sinY2
456 455 oveq2d w=Y2πsinw2=2πsinY2
457 456 eqcomd w=Y2πsinY2=2πsinw2
458 457 adantl φwABw=Y2πsinY2=2πsinw2
459 436 454 458 3eqtrd φwABw=Yifw=Y0Gw=2πsinw2
460 iffalse ¬w=Yifw=Y0Gw=Gw
461 460 adantl φwAB¬w=Yifw=Y0Gw=Gw
462 fvoveq1 y=wsiny2=sinw2
463 462 oveq2d y=w2πsiny2=2πsinw2
464 125 a1i φwAB2π
465 331 halfcld φwABw2
466 465 sincld φwABsinw2
467 464 466 mulcld φwAB2πsinw2
468 467 adantr φwAB¬w=Y2πsinw2
469 3 463 327 468 fvmptd3 φwAB¬w=YGw=2πsinw2
470 461 469 eqtrd φwAB¬w=Yifw=Y0Gw=2πsinw2
471 459 470 pm2.61dan φwABifw=Y0Gw=2πsinw2
472 471 mpteq2dva φwABifw=Y0Gw=wAB2πsinw2
473 eqid w2πsinw2=w2πsinw2
474 82 161 82 constcncfg φw2π:cn
475 id ww
476 2cnd w2
477 139 a1i w20
478 475 476 477 divrec2d ww2=12w
479 478 mpteq2ia ww2=w12w
480 eqid w12w=w12w
481 480 mulc1cncf 12w12w:cn
482 46 481 ax-mp w12w:cn
483 479 482 eqeltri ww2:cn
484 483 a1i φww2:cn
485 418 484 cncfmpt1f φwsinw2:cn
486 474 485 mulcncf φw2πsinw2:cn
487 473 486 352 82 467 cncfmptssg φwAB2πsinw2:ABcn
488 eqid TopOpenfld𝑡AB=TopOpenfld𝑡AB
489 58 488 348 cncfcn ABABcn=TopOpenfld𝑡ABCnTopOpenfld
490 352 81 489 sylancl φABcn=TopOpenfld𝑡ABCnTopOpenfld
491 487 490 eleqtrd φwAB2πsinw2TopOpenfld𝑡ABCnTopOpenfld
492 cncnp TopOpenfld𝑡ABTopOnABTopOpenfldTopOnwAB2πsinw2TopOpenfld𝑡ABCnTopOpenfldwAB2πsinw2:AByABwAB2πsinw2TopOpenfld𝑡ABCnPTopOpenfldy
493 358 356 492 sylancl φwAB2πsinw2TopOpenfld𝑡ABCnTopOpenfldwAB2πsinw2:AByABwAB2πsinw2TopOpenfld𝑡ABCnPTopOpenfldy
494 491 493 mpbid φwAB2πsinw2:AByABwAB2πsinw2TopOpenfld𝑡ABCnPTopOpenfldy
495 494 simprd φyABwAB2πsinw2TopOpenfld𝑡ABCnPTopOpenfldy
496 363 eleq2d y=YwAB2πsinw2TopOpenfld𝑡ABCnPTopOpenfldywAB2πsinw2TopOpenfld𝑡ABCnPTopOpenfldY
497 496 rspccva yABwAB2πsinw2TopOpenfld𝑡ABCnPTopOpenfldyYABwAB2πsinw2TopOpenfld𝑡ABCnPTopOpenfldY
498 495 9 497 syl2anc φwAB2πsinw2TopOpenfld𝑡ABCnPTopOpenfldY
499 472 498 eqeltrd φwABifw=Y0GwTopOpenfld𝑡ABCnPTopOpenfldY
500 310 mpteq1d φwABYYifw=Y0Gw=wABifw=Y0Gw
501 369 eqcomd φTopOpenfld𝑡ABYY=TopOpenfld𝑡AB
502 501 oveq1d φTopOpenfld𝑡ABYYCnPTopOpenfld=TopOpenfld𝑡ABCnPTopOpenfld
503 502 fveq1d φTopOpenfld𝑡ABYYCnPTopOpenfldY=TopOpenfld𝑡ABCnPTopOpenfldY
504 499 500 503 3eltr4d φwABYYifw=Y0GwTopOpenfld𝑡ABYYCnPTopOpenfldY
505 eqid wABYYifw=Y0Gw=wABYYifw=Y0Gw
506 21 129 syldan φyABY2πsiny2
507 506 3 fmptd φG:ABY
508 374 58 505 507 377 267 ellimc φ0GlimYwABYYifw=Y0GwTopOpenfld𝑡ABYYCnPTopOpenfldY
509 504 508 mpbird φ0GlimY
510 260 nrexdv φ¬yABYymod2π=0
511 507 ffund φFunG
512 fvelima FunG0GABYyABYGy=0
513 511 512 sylan φ0GABYyABYGy=0
514 2cnd φyABY2
515 124 a1i φyABYπ
516 139 a1i φyABY20
517 243 a1i φyABYπ0
518 111 514 515 516 517 divdiv1d φyABYy2π=y2π
519 518 eqcomd φyABYy2π=y2π
520 519 adantr φyABYGy=0y2π=y2π
521 2cnd yABYGy=02
522 124 a1i yABYGy=0π
523 521 522 mulcld yABYGy=02π
524 237 adantr yABYGy=0y
525 524 halfcld yABYGy=0y2
526 525 sincld yABYGy=0siny2
527 523 526 mulcld yABYGy=02πsiny2
528 3 fvmpt2 yABY2πsiny2Gy=2πsiny2
529 527 528 syldan yABYGy=0Gy=2πsiny2
530 529 eqcomd yABYGy=02πsiny2=Gy
531 simpr yABYGy=0Gy=0
532 530 531 eqtrd yABYGy=02πsiny2=0
533 125 a1i yABY2π
534 237 halfcld yABYy2
535 534 sincld yABYsiny2
536 533 535 mul0ord yABY2πsiny2=02π=0siny2=0
537 536 adantr yABYGy=02πsiny2=02π=0siny2=0
538 532 537 mpbid yABYGy=02π=0siny2=0
539 2cnne0 220
540 124 243 pm3.2i ππ0
541 mulne0 220ππ02π0
542 539 540 541 mp2an 2π0
543 542 neii ¬2π=0
544 pm2.53 2π=0siny2=0¬2π=0siny2=0
545 538 543 544 mpisyl yABYGy=0siny2=0
546 545 adantll φyABYGy=0siny2=0
547 111 adantr φyABYGy=0y
548 547 halfcld φyABYGy=0y2
549 548 250 syl φyABYGy=0siny2=0y2π
550 546 549 mpbid φyABYGy=0y2π
551 520 550 eqeltrd φyABYGy=0y2π
552 21 adantr φyABYGy=0y
553 552 257 258 sylancl φyABYGy=0ymod2π=0y2π
554 551 553 mpbird φyABYGy=0ymod2π=0
555 554 ex φyABYGy=0ymod2π=0
556 555 reximdva φyABYGy=0yABYymod2π=0
557 556 adantr φ0GABYyABYGy=0yABYymod2π=0
558 513 557 mpd φ0GABYyABYymod2π=0
559 510 558 mtand φ¬0GABY
560 simpr φyABYyABY
561 6 fvmpt2 yABYπcosy2Iy=πcosy2
562 560 206 561 syl2anc φyABYIy=πcosy2
563 534 coscld yABYcosy2
564 563 adantl φyABYcosy2
565 515 564 517 11 mulne0d φyABYπcosy20
566 562 565 eqnetrd φyABYIy0
567 566 neneqd φyABY¬Iy=0
568 567 nrexdv φ¬yABYIy=0
569 206 6 fmptd φI:ABY
570 569 ffund φFunI
571 fvelima FunI0IABYyABYIy=0
572 570 571 sylan φ0IABYyABYIy=0
573 568 572 mtand φ¬0IABY
574 204 imaeq1d φGABY=IABY
575 573 574 neleqtrrd φ¬0GABY
576 1 dirkerval2 NYDNY=ifYmod2π=02 N+12πsinN+12Y2πsinY2
577 8 64 576 syl2anc φDNY=ifYmod2π=02 N+12πsinN+12Y2πsinY2
578 10 iftrued φifYmod2π=02 N+12πsinN+12Y2πsinY2=2 N+12π
579 7 a1i φL=wABN+12cosN+12wπcosw2
580 iftrue w=Yifw=Y2 N+12πyABYHyIyw=2 N+12π
581 580 adantl φwABw=Yifw=Y2 N+12πyABYHyIyw=2 N+12π
582 159 45 mulcld φ2 N
583 582 400 addcld φ2 N+1
584 583 159 160 380 381 divdiv1d φ2 N+12π=2 N+12π
585 584 eqcomd φ2 N+12π=2 N+12π
586 582 400 159 380 divdird φ2 N+12=2 N2+12
587 45 159 380 divcan3d φ2 N2=N
588 587 oveq1d φ2 N2+12=N+12
589 586 588 eqtrd φ2 N+12=N+12
590 589 oveq1d φ2 N+12π=N+12π
591 585 590 eqtrd φ2 N+12π=N+12π
592 591 ad2antrr φwABw=Y2 N+12π=N+12π
593 313 fveq2d w=YcosN+12w=cosN+12Y
594 593 oveq2d w=YN+12cosN+12w=N+12cosN+12Y
595 fvoveq1 w=Ycosw2=cosY2
596 595 oveq2d w=Yπcosw2=πcosY2
597 594 596 oveq12d w=YN+12cosN+12wπcosw2=N+12cosN+12YπcosY2
598 597 adantl φwABw=YN+12cosN+12wπcosw2=N+12cosN+12YπcosY2
599 45 47 267 adddird φN+12Y=NY+12Y
600 400 159 267 380 div32d φ12Y=1Y2
601 439 mullidd φ1Y2=Y2
602 600 601 eqtrd φ12Y=Y2
603 602 oveq2d φNY+12Y=NY+Y2
604 45 267 mulcld φNY
605 604 439 addcomd φNY+Y2=Y2+NY
606 599 603 605 3eqtrd φN+12Y=Y2+NY
607 606 fveq2d φcosN+12Y=cosY2+NY
608 604 161 382 divcan1d φNY2π2π=NY
609 608 eqcomd φNY=NY2π2π
610 609 oveq2d φY2+NY=Y2+NY2π2π
611 610 fveq2d φcosY2+NY=cosY2+NY2π2π
612 45 267 161 382 divassd φNY2π=NY2π
613 408 407 zmulcld φNY2π
614 612 613 eqeltrd φNY2π
615 cosper Y2NY2πcosY2+NY2π2π=cosY2
616 439 614 615 syl2anc φcosY2+NY2π2π=cosY2
617 607 611 616 3eqtrd φcosN+12Y=cosY2
618 617 oveq2d φN+12cosN+12Y=N+12cosY2
619 618 oveq1d φN+12cosN+12YπcosY2=N+12cosY2πcosY2
620 439 coscld φcosY2
621 267 159 160 380 381 divdiv1d φY2π=Y2π
622 621 407 eqeltrd φY2π
623 622 zred φY2π
624 623 276 ltaddrpd φY2π<Y2π+12
625 halflt1 12<1
626 625 a1i φ12<1
627 272 271 623 626 ltadd2dd φY2π+12<Y2π+1
628 btwnnz Y2πY2π<Y2π+12Y2π+12<Y2π+1¬Y2π+12
629 622 624 627 628 syl3anc φ¬Y2π+12
630 coseq0 Y2cosY2=0Y2π+12
631 439 630 syl φcosY2=0Y2π+12
632 629 631 mtbird φ¬cosY2=0
633 632 neqned φcosY20
634 48 160 620 381 633 divcan5rd φN+12cosY2πcosY2=N+12π
635 619 634 eqtrd φN+12cosN+12YπcosY2=N+12π
636 635 ad2antrr φwABw=YN+12cosN+12YπcosY2=N+12π
637 598 636 eqtr2d φwABw=YN+12π=N+12cosN+12wπcosw2
638 581 592 637 3eqtrrd φwABw=YN+12cosN+12wπcosw2=ifw=Y2 N+12πyABYHyIyw
639 iffalse ¬w=Yifw=Y2 N+12πyABYHyIyw=yABYHyIyw
640 639 adantl φwAB¬w=Yifw=Y2 N+12πyABYHyIyw=yABYHyIyw
641 eqidd φwAB¬w=YyABYHyIy=yABYHyIy
642 fveq2 y=wHy=Hw
643 fveq2 y=wIy=Iw
644 642 643 oveq12d y=wHyIy=HwIw
645 644 adantl φwAB¬w=Yy=wHyIy=HwIw
646 112 5 fmptd φH:ABY
647 646 ad2antrr φwAB¬w=YH:ABY
648 647 327 ffvelcdmd φwAB¬w=YHw
649 569 ad2antrr φwAB¬w=YI:ABY
650 649 327 ffvelcdmd φwAB¬w=YIw
651 6 a1i φwAB¬w=YI=yABYπcosy2
652 simpr φwAB¬w=Yy=wy=w
653 652 fvoveq1d φwAB¬w=Yy=wcosy2=cosw2
654 653 oveq2d φwAB¬w=Yy=wπcosy2=πcosw2
655 124 a1i wABπ
656 330 halfcld wABw2
657 656 coscld wABcosw2
658 655 657 mulcld wABπcosw2
659 658 ad2antlr φwAB¬w=Yπcosw2
660 651 654 327 659 fvmptd φwAB¬w=YIw=πcosw2
661 540 a1i φwAB¬w=Yππ0
662 657 ad2antlr φwAB¬w=Ycosw2
663 simpll φwAB¬w=Yφ
664 fvoveq1 y=wcosy2=cosw2
665 664 neeq1d y=wcosy20cosw20
666 231 665 imbi12d y=wφyABYcosy20φwABYcosw20
667 666 11 chvarvv φwABYcosw20
668 663 327 667 syl2anc φwAB¬w=Ycosw20
669 mulne0 ππ0cosw2cosw20πcosw20
670 661 662 668 669 syl12anc φwAB¬w=Yπcosw20
671 660 670 eqnetrd φwAB¬w=YIw0
672 648 650 671 divcld φwAB¬w=YHwIw
673 641 645 327 672 fvmptd φwAB¬w=YyABYHyIyw=HwIw
674 5 a1i φwAB¬w=YH=yABYN+12cosN+12y
675 320 fveq2d φwAB¬w=Yy=wcosN+12y=cosN+12w
676 675 oveq2d φwAB¬w=Yy=wN+12cosN+12y=N+12cosN+12w
677 332 coscld φwABcosN+12w
678 328 677 mulcld φwABN+12cosN+12w
679 678 adantr φwAB¬w=YN+12cosN+12w
680 674 676 327 679 fvmptd φwAB¬w=YHw=N+12cosN+12w
681 680 660 oveq12d φwAB¬w=YHwIw=N+12cosN+12wπcosw2
682 640 673 681 3eqtrrd φwAB¬w=YN+12cosN+12wπcosw2=ifw=Y2 N+12πyABYHyIyw
683 638 682 pm2.61dan φwABN+12cosN+12wπcosw2=ifw=Y2 N+12πyABYHyIyw
684 683 mpteq2dva φwABN+12cosN+12wπcosw2=wABifw=Y2 N+12πyABYHyIyw
685 579 684 eqtr2d φwABifw=Y2 N+12πyABYHyIyw=L
686 352 48 82 constcncfg φwABN+12:ABcn
687 cosf cos:
688 236 51 sylan2 φyABN+12y
689 eqid yABN+12y=yABN+12y
690 688 689 fmptd φyABN+12y:AB
691 fcompt cos:yABN+12y:ABcosyABN+12y=wABcosyABN+12yw
692 687 690 691 sylancr φcosyABN+12y=wABcosyABN+12yw
693 eqidd φwAByABN+12y=yABN+12y
694 319 adantl φwABy=wN+12y=N+12w
695 simpr φwABwAB
696 693 694 695 332 fvmptd φwAByABN+12yw=N+12w
697 696 fveq2d φwABcosyABN+12yw=cosN+12w
698 697 mpteq2dva φwABcosyABN+12yw=wABcosN+12w
699 692 698 eqtr2d φwABcosN+12w=cosyABN+12y
700 352 48 82 constcncfg φyABN+12:ABcn
701 352 82 idcncfg φyABy:ABcn
702 700 701 mulcncf φyABN+12y:ABcn
703 coscn cos:cn
704 703 a1i φcos:cn
705 702 704 cncfco φcosyABN+12y:ABcn
706 699 705 eqeltrd φwABcosN+12w:ABcn
707 686 706 mulcncf φwABN+12cosN+12w:ABcn
708 eqid wABπcosw2=wABπcosw2
709 352 160 82 constcncfg φwABπ:ABcn
710 2cnd φwAB2
711 139 a1i φwAB20
712 331 710 711 divrecd φwABw2=w12
713 712 mpteq2dva φwABw2=wABw12
714 eqid ww12=ww12
715 cncfmptid ww:cn
716 81 81 715 mp2an ww:cn
717 716 a1i φww:cn
718 81 a1i 12
719 id 1212
720 718 719 718 constcncfg 12w12:cn
721 46 720 mp1i φw12:cn
722 717 721 mulcncf φww12:cn
723 712 465 eqeltrrd φwABw12
724 714 722 352 82 723 cncfmptssg φwABw12:ABcn
725 713 724 eqeltrd φwABw2:ABcn
726 704 725 cncfmpt1f φwABcosw2:ABcn
727 709 726 mulcncf φwABπcosw2:ABcn
728 ssid ABAB
729 728 a1i φABAB
730 difssd φ0
731 658 adantl φwABπcosw2
732 124 a1i φwABπ
733 657 adantl φwABcosw2
734 243 a1i φwABπ0
735 595 adantl φw=Ycosw2=cosY2
736 633 adantr φw=YcosY20
737 735 736 eqnetrd φw=Ycosw20
738 737 adantlr φwABw=Ycosw20
739 738 668 pm2.61dan φwABcosw20
740 732 733 734 739 mulne0d φwABπcosw20
741 740 neneqd φwAB¬πcosw2=0
742 elsng πcosw2πcosw20πcosw2=0
743 731 742 syl φwABπcosw20πcosw2=0
744 741 743 mtbird φwAB¬πcosw20
745 731 744 eldifd φwABπcosw20
746 708 727 729 730 745 cncfmptssg φwABπcosw2:ABcn0
747 707 746 divcncf φwABN+12cosN+12wπcosw2:ABcn
748 747 490 eleqtrd φwABN+12cosN+12wπcosw2TopOpenfld𝑡ABCnTopOpenfld
749 579 748 eqeltrd φLTopOpenfld𝑡ABCnTopOpenfld
750 cncnp TopOpenfld𝑡ABTopOnABTopOpenfldTopOnLTopOpenfld𝑡ABCnTopOpenfldL:AByABLTopOpenfld𝑡ABCnPTopOpenfldy
751 358 356 750 sylancl φLTopOpenfld𝑡ABCnTopOpenfldL:AByABLTopOpenfld𝑡ABCnPTopOpenfldy
752 749 751 mpbid φL:AByABLTopOpenfld𝑡ABCnPTopOpenfldy
753 752 simprd φyABLTopOpenfld𝑡ABCnPTopOpenfldy
754 363 eleq2d y=YLTopOpenfld𝑡ABCnPTopOpenfldyLTopOpenfld𝑡ABCnPTopOpenfldY
755 754 rspccva yABLTopOpenfld𝑡ABCnPTopOpenfldyYABLTopOpenfld𝑡ABCnPTopOpenfldY
756 753 9 755 syl2anc φLTopOpenfld𝑡ABCnPTopOpenfldY
757 685 756 eqeltrd φwABifw=Y2 N+12πyABYHyIywTopOpenfld𝑡ABCnPTopOpenfldY
758 310 mpteq1d φwABYYifw=Y2 N+12πyABYHyIyw=wABifw=Y2 N+12πyABYHyIyw
759 757 758 503 3eltr4d φwABYYifw=Y2 N+12πyABYHyIywTopOpenfld𝑡ABYYCnPTopOpenfldY
760 eqid wABYYifw=Y2 N+12πyABYHyIyw=wABYYifw=Y2 N+12πyABYHyIyw
761 5 fvmpt2 yABYN+12cosN+12yHy=N+12cosN+12y
762 560 112 761 syl2anc φyABYHy=N+12cosN+12y
763 762 562 oveq12d φyABYHyIy=N+12cosN+12yπcosy2
764 112 206 565 divcld φyABYN+12cosN+12yπcosy2
765 763 764 eqeltrd φyABYHyIy
766 eqid yABYHyIy=yABYHyIy
767 765 766 fmptd φyABYHyIy:ABY
768 374 58 760 767 377 267 ellimc φ2 N+12πyABYHyIylimYwABYYifw=Y2 N+12πyABYHyIywTopOpenfld𝑡ABYYCnPTopOpenfldY
769 759 768 mpbird φ2 N+12πyABYHyIylimY
770 109 eqcomd φH=DF
771 770 fveq1d φHy=Fy
772 204 eqcomd φI=DG
773 772 fveq1d φIy=Gy
774 771 773 oveq12d φHyIy=FyGy
775 774 mpteq2dv φyABYHyIy=yABYFyGy
776 775 oveq1d φyABYHyIylimY=yABYFyGylimY
777 769 776 eleqtrd φ2 N+12πyABYFyGylimY
778 578 777 eqeltrd φifYmod2π=02 N+12πsinN+12Y2πsinY2yABYFyGylimY
779 577 778 eqeltrd φDNYyABYFyGylimY
780 15 24 32 34 9 35 116 210 434 509 559 575 779 lhop φDNYyABYFyGylimY
781 1 dirkerval NDN=yifymod2π=02 N+12πsinN+12y2πsiny2
782 8 781 syl φDN=yifymod2π=02 N+12πsinN+12y2πsiny2
783 782 reseq1d φDNABY=yifymod2π=02 N+12πsinN+12y2πsiny2ABY
784 15 resmptd φyifymod2π=02 N+12πsinN+12y2πsiny2ABY=yABYifymod2π=02 N+12πsinN+12y2πsiny2
785 260 iffalsed φyABYifymod2π=02 N+12πsinN+12y2πsiny2=sinN+12y2πsiny2
786 23 recnd φyABYsinN+12y
787 2 fvmpt2 yABYsinN+12yFy=sinN+12y
788 560 786 787 syl2anc φyABYFy=sinN+12y
789 560 506 528 syl2anc φyABYGy=2πsiny2
790 788 789 oveq12d φyABYFyGy=sinN+12y2πsiny2
791 785 790 eqtr4d φyABYifymod2π=02 N+12πsinN+12y2πsiny2=FyGy
792 791 mpteq2dva φyABYifymod2π=02 N+12πsinN+12y2πsiny2=yABYFyGy
793 783 784 792 3eqtrrd φyABYFyGy=DNABY
794 793 oveq1d φyABYFyGylimY=DNABYlimY
795 780 794 eleqtrd φDNYDNABYlimY