Metamath Proof Explorer


Theorem lhop

Description: L'Hôpital's Rule. If I is an open set of the reals, F and G are real functions on A containing all of I except possibly B , which are differentiable everywhere on I \ { B } , F and G both approach 0, and the limit of F ' ( x ) / G ' ( x ) at B is C , then the limit F ( x ) / G ( x ) at B also exists and equals C . This is Metamath 100 proof #64. (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses lhop.a φA
lhop.f φF:A
lhop.g φG:A
lhop.i φItopGenran.
lhop.b φBI
lhop.d D=IB
lhop.if φDdomF
lhop.ig φDdomG
lhop.f0 φ0FlimB
lhop.g0 φ0GlimB
lhop.gn0 φ¬0GD
lhop.gd0 φ¬0GD
lhop.c φCzDFzGzlimB
Assertion lhop φCzDFzGzlimB

Proof

Step Hyp Ref Expression
1 lhop.a φA
2 lhop.f φF:A
3 lhop.g φG:A
4 lhop.i φItopGenran.
5 lhop.b φBI
6 lhop.d D=IB
7 lhop.if φDdomF
8 lhop.ig φDdomG
9 lhop.f0 φ0FlimB
10 lhop.g0 φ0GlimB
11 lhop.gn0 φ¬0GD
12 lhop.gd0 φ¬0GD
13 lhop.c φCzDFzGzlimB
14 eqid abs2=abs2
15 14 rexmet abs2∞Met
16 15 a1i φabs2∞Met
17 eqid MetOpenabs2=MetOpenabs2
18 14 17 tgioo topGenran.=MetOpenabs2
19 18 mopni2 abs2∞MetItopGenran.BIr+Bballabs2rI
20 16 4 5 19 syl3anc φr+Bballabs2rI
21 elssuni ItopGenran.ItopGenran.
22 uniretop =topGenran.
23 21 22 sseqtrrdi ItopGenran.I
24 4 23 syl φI
25 24 5 sseldd φB
26 rpre r+r
27 14 bl2ioo BrBballabs2r=BrB+r
28 25 26 27 syl2an φr+Bballabs2r=BrB+r
29 28 sseq1d φr+Bballabs2rIBrB+rI
30 25 adantr φr+BrB+rIB
31 simprl φr+BrB+rIr+
32 31 rpred φr+BrB+rIr
33 30 32 resubcld φr+BrB+rIBr
34 33 rexrd φr+BrB+rIBr*
35 30 31 ltsubrpd φr+BrB+rIBr<B
36 2 adantr φr+BrB+rIF:A
37 ssun1 BrBBrBBB+r
38 unass BBrBBB+r=BBrBBB+r
39 uncom BBrB=BrBB
40 39 uneq1i BBrBBB+r=BrBBBB+r
41 38 40 eqtr3i BBrBBB+r=BrBBBB+r
42 30 rexrd φr+BrB+rIB*
43 30 32 readdcld φr+BrB+rIB+r
44 43 rexrd φr+BrB+rIB+r*
45 30 31 ltaddrpd φr+BrB+rIB<B+r
46 ioojoin Br*B*B+r*Br<BB<B+rBrBBBB+r=BrB+r
47 34 42 44 35 45 46 syl32anc φr+BrB+rIBrBBBB+r=BrB+r
48 41 47 eqtrid φr+BrB+rIBBrBBB+r=BrB+r
49 elioo2 Br*B+r*BBrB+rBBr<BB<B+r
50 34 44 49 syl2anc φr+BrB+rIBBrB+rBBr<BB<B+r
51 30 35 45 50 mpbir3and φr+BrB+rIBBrB+r
52 51 snssd φr+BrB+rIBBrB+r
53 incom BBrBBB+r=BrBBB+rB
54 ubioo ¬BBrB
55 lbioo ¬BBB+r
56 54 55 pm3.2ni ¬BBrBBBB+r
57 elun BBrBBB+rBBrBBBB+r
58 56 57 mtbir ¬BBrBBB+r
59 disjsn BrBBB+rB=¬BBrBBB+r
60 58 59 mpbir BrBBB+rB=
61 53 60 eqtri BBrBBB+r=
62 uneqdifeq BBrB+rBBrBBB+r=BBrBBB+r=BrB+rBrB+rB=BrBBB+r
63 52 61 62 sylancl φr+BrB+rIBBrBBB+r=BrB+rBrB+rB=BrBBB+r
64 48 63 mpbid φr+BrB+rIBrB+rB=BrBBB+r
65 37 64 sseqtrrid φr+BrB+rIBrBBrB+rB
66 ssdif BrB+rIBrB+rBIB
67 66 ad2antll φr+BrB+rIBrB+rBIB
68 67 6 sseqtrrdi φr+BrB+rIBrB+rBD
69 ax-resscn
70 69 a1i φ
71 fss F:AF:A
72 2 69 71 sylancl φF:A
73 70 72 1 dvbss φdomFA
74 7 73 sstrd φDA
75 74 adantr φr+BrB+rIDA
76 68 75 sstrd φr+BrB+rIBrB+rBA
77 65 76 sstrd φr+BrB+rIBrBA
78 36 77 fssresd φr+BrB+rIFBrB:BrB
79 3 adantr φr+BrB+rIG:A
80 79 77 fssresd φr+BrB+rIGBrB:BrB
81 69 a1i φr+BrB+rI
82 72 adantr φr+BrB+rIF:A
83 1 adantr φr+BrB+rIA
84 ioossre BrB
85 84 a1i φr+BrB+rIBrB
86 eqid TopOpenfld=TopOpenfld
87 86 tgioo2 topGenran.=TopOpenfld𝑡
88 86 87 dvres F:AABrBDFBrB=FinttopGenran.BrB
89 81 82 83 85 88 syl22anc φr+BrB+rIDFBrB=FinttopGenran.BrB
90 retop topGenran.Top
91 iooretop BrBtopGenran.
92 isopn3i topGenran.TopBrBtopGenran.inttopGenran.BrB=BrB
93 90 91 92 mp2an inttopGenran.BrB=BrB
94 93 reseq2i FinttopGenran.BrB=FBrB
95 89 94 eqtrdi φr+BrB+rIDFBrB=FBrB
96 95 dmeqd φr+BrB+rIdomFBrB=domFBrB
97 65 68 sstrd φr+BrB+rIBrBD
98 7 adantr φr+BrB+rIDdomF
99 97 98 sstrd φr+BrB+rIBrBdomF
100 ssdmres BrBdomFdomFBrB=BrB
101 99 100 sylib φr+BrB+rIdomFBrB=BrB
102 96 101 eqtrd φr+BrB+rIdomFBrB=BrB
103 fss G:AG:A
104 3 69 103 sylancl φG:A
105 104 adantr φr+BrB+rIG:A
106 86 87 dvres G:AABrBDGBrB=GinttopGenran.BrB
107 81 105 83 85 106 syl22anc φr+BrB+rIDGBrB=GinttopGenran.BrB
108 93 reseq2i GinttopGenran.BrB=GBrB
109 107 108 eqtrdi φr+BrB+rIDGBrB=GBrB
110 109 dmeqd φr+BrB+rIdomGBrB=domGBrB
111 8 adantr φr+BrB+rIDdomG
112 97 111 sstrd φr+BrB+rIBrBdomG
113 ssdmres BrBdomGdomGBrB=BrB
114 112 113 sylib φr+BrB+rIdomGBrB=BrB
115 110 114 eqtrd φr+BrB+rIdomGBrB=BrB
116 limcresi FlimBFBrBlimB
117 9 adantr φr+BrB+rI0FlimB
118 116 117 sselid φr+BrB+rI0FBrBlimB
119 limcresi GlimBGBrBlimB
120 10 adantr φr+BrB+rI0GlimB
121 119 120 sselid φr+BrB+rI0GBrBlimB
122 df-ima GBrB=ranGBrB
123 imass2 BrBDGBrBGD
124 97 123 syl φr+BrB+rIGBrBGD
125 122 124 eqsstrrid φr+BrB+rIranGBrBGD
126 11 adantr φr+BrB+rI¬0GD
127 125 126 ssneldd φr+BrB+rI¬0ranGBrB
128 109 rneqd φr+BrB+rIranGBrB=ranGBrB
129 df-ima GBrB=ranGBrB
130 128 129 eqtr4di φr+BrB+rIranGBrB=GBrB
131 imass2 BrBDGBrBGD
132 97 131 syl φr+BrB+rIGBrBGD
133 130 132 eqsstrd φr+BrB+rIranGBrBGD
134 12 adantr φr+BrB+rI¬0GD
135 133 134 ssneldd φr+BrB+rI¬0ranGBrB
136 limcresi zDFzGzlimBzDFzGzBrBlimB
137 97 resmptd φr+BrB+rIzDFzGzBrB=zBrBFzGz
138 95 fveq1d φr+BrB+rIFBrBz=FBrBz
139 fvres zBrBFBrBz=Fz
140 138 139 sylan9eq φr+BrB+rIzBrBFBrBz=Fz
141 109 fveq1d φr+BrB+rIGBrBz=GBrBz
142 fvres zBrBGBrBz=Gz
143 141 142 sylan9eq φr+BrB+rIzBrBGBrBz=Gz
144 140 143 oveq12d φr+BrB+rIzBrBFBrBzGBrBz=FzGz
145 144 mpteq2dva φr+BrB+rIzBrBFBrBzGBrBz=zBrBFzGz
146 137 145 eqtr4d φr+BrB+rIzDFzGzBrB=zBrBFBrBzGBrBz
147 146 oveq1d φr+BrB+rIzDFzGzBrBlimB=zBrBFBrBzGBrBzlimB
148 136 147 sseqtrid φr+BrB+rIzDFzGzlimBzBrBFBrBzGBrBzlimB
149 13 adantr φr+BrB+rICzDFzGzlimB
150 148 149 sseldd φr+BrB+rICzBrBFBrBzGBrBzlimB
151 34 30 35 78 80 102 115 118 121 127 135 150 lhop2 φr+BrB+rICzBrBFBrBzGBrBzlimB
152 65 resmptd φr+BrB+rIzBrB+rBFzGzBrB=zBrBFzGz
153 fvres zBrBFBrBz=Fz
154 fvres zBrBGBrBz=Gz
155 153 154 oveq12d zBrBFBrBzGBrBz=FzGz
156 155 mpteq2ia zBrBFBrBzGBrBz=zBrBFzGz
157 152 156 eqtr4di φr+BrB+rIzBrB+rBFzGzBrB=zBrBFBrBzGBrBz
158 157 oveq1d φr+BrB+rIzBrB+rBFzGzBrBlimB=zBrBFBrBzGBrBzlimB
159 151 158 eleqtrrd φr+BrB+rICzBrB+rBFzGzBrBlimB
160 ssun2 BB+rBrBBB+r
161 160 64 sseqtrrid φr+BrB+rIBB+rBrB+rB
162 161 76 sstrd φr+BrB+rIBB+rA
163 36 162 fssresd φr+BrB+rIFBB+r:BB+r
164 79 162 fssresd φr+BrB+rIGBB+r:BB+r
165 ioossre BB+r
166 165 a1i φr+BrB+rIBB+r
167 86 87 dvres F:AABB+rDFBB+r=FinttopGenran.BB+r
168 81 82 83 166 167 syl22anc φr+BrB+rIDFBB+r=FinttopGenran.BB+r
169 iooretop BB+rtopGenran.
170 isopn3i topGenran.TopBB+rtopGenran.inttopGenran.BB+r=BB+r
171 90 169 170 mp2an inttopGenran.BB+r=BB+r
172 171 reseq2i FinttopGenran.BB+r=FBB+r
173 168 172 eqtrdi φr+BrB+rIDFBB+r=FBB+r
174 173 dmeqd φr+BrB+rIdomFBB+r=domFBB+r
175 161 68 sstrd φr+BrB+rIBB+rD
176 175 98 sstrd φr+BrB+rIBB+rdomF
177 ssdmres BB+rdomFdomFBB+r=BB+r
178 176 177 sylib φr+BrB+rIdomFBB+r=BB+r
179 174 178 eqtrd φr+BrB+rIdomFBB+r=BB+r
180 86 87 dvres G:AABB+rDGBB+r=GinttopGenran.BB+r
181 81 105 83 166 180 syl22anc φr+BrB+rIDGBB+r=GinttopGenran.BB+r
182 171 reseq2i GinttopGenran.BB+r=GBB+r
183 181 182 eqtrdi φr+BrB+rIDGBB+r=GBB+r
184 183 dmeqd φr+BrB+rIdomGBB+r=domGBB+r
185 175 111 sstrd φr+BrB+rIBB+rdomG
186 ssdmres BB+rdomGdomGBB+r=BB+r
187 185 186 sylib φr+BrB+rIdomGBB+r=BB+r
188 184 187 eqtrd φr+BrB+rIdomGBB+r=BB+r
189 limcresi FlimBFBB+rlimB
190 189 117 sselid φr+BrB+rI0FBB+rlimB
191 limcresi GlimBGBB+rlimB
192 191 120 sselid φr+BrB+rI0GBB+rlimB
193 df-ima GBB+r=ranGBB+r
194 imass2 BB+rDGBB+rGD
195 175 194 syl φr+BrB+rIGBB+rGD
196 193 195 eqsstrrid φr+BrB+rIranGBB+rGD
197 196 126 ssneldd φr+BrB+rI¬0ranGBB+r
198 183 rneqd φr+BrB+rIranGBB+r=ranGBB+r
199 df-ima GBB+r=ranGBB+r
200 198 199 eqtr4di φr+BrB+rIranGBB+r=GBB+r
201 imass2 BB+rDGBB+rGD
202 175 201 syl φr+BrB+rIGBB+rGD
203 200 202 eqsstrd φr+BrB+rIranGBB+rGD
204 203 134 ssneldd φr+BrB+rI¬0ranGBB+r
205 limcresi zDFzGzlimBzDFzGzBB+rlimB
206 175 resmptd φr+BrB+rIzDFzGzBB+r=zBB+rFzGz
207 173 fveq1d φr+BrB+rIFBB+rz=FBB+rz
208 fvres zBB+rFBB+rz=Fz
209 207 208 sylan9eq φr+BrB+rIzBB+rFBB+rz=Fz
210 183 fveq1d φr+BrB+rIGBB+rz=GBB+rz
211 fvres zBB+rGBB+rz=Gz
212 210 211 sylan9eq φr+BrB+rIzBB+rGBB+rz=Gz
213 209 212 oveq12d φr+BrB+rIzBB+rFBB+rzGBB+rz=FzGz
214 213 mpteq2dva φr+BrB+rIzBB+rFBB+rzGBB+rz=zBB+rFzGz
215 206 214 eqtr4d φr+BrB+rIzDFzGzBB+r=zBB+rFBB+rzGBB+rz
216 215 oveq1d φr+BrB+rIzDFzGzBB+rlimB=zBB+rFBB+rzGBB+rzlimB
217 205 216 sseqtrid φr+BrB+rIzDFzGzlimBzBB+rFBB+rzGBB+rzlimB
218 217 149 sseldd φr+BrB+rICzBB+rFBB+rzGBB+rzlimB
219 30 44 45 163 164 179 188 190 192 197 204 218 lhop1 φr+BrB+rICzBB+rFBB+rzGBB+rzlimB
220 161 resmptd φr+BrB+rIzBrB+rBFzGzBB+r=zBB+rFzGz
221 fvres zBB+rFBB+rz=Fz
222 fvres zBB+rGBB+rz=Gz
223 221 222 oveq12d zBB+rFBB+rzGBB+rz=FzGz
224 223 mpteq2ia zBB+rFBB+rzGBB+rz=zBB+rFzGz
225 220 224 eqtr4di φr+BrB+rIzBrB+rBFzGzBB+r=zBB+rFBB+rzGBB+rz
226 225 oveq1d φr+BrB+rIzBrB+rBFzGzBB+rlimB=zBB+rFBB+rzGBB+rzlimB
227 219 226 eleqtrrd φr+BrB+rICzBrB+rBFzGzBB+rlimB
228 159 227 elind φr+BrB+rICzBrB+rBFzGzBrBlimBzBrB+rBFzGzBB+rlimB
229 68 resmptd φr+BrB+rIzDFzGzBrB+rB=zBrB+rBFzGz
230 229 oveq1d φr+BrB+rIzDFzGzBrB+rBlimB=zBrB+rBFzGzlimB
231 74 sselda φzDzA
232 2 ffvelcdmda φzAFz
233 231 232 syldan φzDFz
234 233 recnd φzDFz
235 3 ffvelcdmda φzAGz
236 231 235 syldan φzDGz
237 236 recnd φzDGz
238 11 adantr φzD¬0GD
239 3 ffnd φGFnA
240 239 adantr φzDGFnA
241 74 adantr φzDDA
242 simpr φzDzD
243 fnfvima GFnADAzDGzGD
244 240 241 242 243 syl3anc φzDGzGD
245 eleq1 Gz=0GzGD0GD
246 244 245 syl5ibcom φzDGz=00GD
247 246 necon3bd φzD¬0GDGz0
248 238 247 mpd φzDGz0
249 234 237 248 divcld φzDFzGz
250 249 adantlr φr+BrB+rIzDFzGz
251 250 fmpttd φr+BrB+rIzDFzGz:D
252 difss IBI
253 6 252 eqsstri DI
254 24 69 sstrdi φI
255 253 254 sstrid φD
256 255 adantr φr+BrB+rID
257 eqid TopOpenfld𝑡DB=TopOpenfld𝑡DB
258 6 uneq1i DB=IBB
259 undif1 IBB=IB
260 258 259 eqtri DB=IB
261 simprr φr+BrB+rIBrB+rI
262 52 261 sstrd φr+BrB+rIBI
263 ssequn2 BIIB=I
264 262 263 sylib φr+BrB+rIIB=I
265 260 264 eqtrid φr+BrB+rIDB=I
266 265 oveq2d φr+BrB+rITopOpenfld𝑡DB=TopOpenfld𝑡I
267 24 adantr φr+BrB+rII
268 eqid topGenran.=topGenran.
269 86 268 rerest ITopOpenfld𝑡I=topGenran.𝑡I
270 267 269 syl φr+BrB+rITopOpenfld𝑡I=topGenran.𝑡I
271 266 270 eqtrd φr+BrB+rITopOpenfld𝑡DB=topGenran.𝑡I
272 271 fveq2d φr+BrB+rIintTopOpenfld𝑡DB=inttopGenran.𝑡I
273 272 fveq1d φr+BrB+rIintTopOpenfld𝑡DBBrB+r=inttopGenran.𝑡IBrB+r
274 86 cnfldtopon TopOpenfldTopOn
275 254 adantr φr+BrB+rII
276 resttopon TopOpenfldTopOnITopOpenfld𝑡ITopOnI
277 274 275 276 sylancr φr+BrB+rITopOpenfld𝑡ITopOnI
278 topontop TopOpenfld𝑡ITopOnITopOpenfld𝑡ITop
279 277 278 syl φr+BrB+rITopOpenfld𝑡ITop
280 270 279 eqeltrrd φr+BrB+rItopGenran.𝑡ITop
281 iooretop BrB+rtopGenran.
282 281 a1i φr+BrB+rIBrB+rtopGenran.
283 4 adantr φr+BrB+rIItopGenran.
284 restopn2 topGenran.TopItopGenran.BrB+rtopGenran.𝑡IBrB+rtopGenran.BrB+rI
285 90 283 284 sylancr φr+BrB+rIBrB+rtopGenran.𝑡IBrB+rtopGenran.BrB+rI
286 282 261 285 mpbir2and φr+BrB+rIBrB+rtopGenran.𝑡I
287 isopn3i topGenran.𝑡ITopBrB+rtopGenran.𝑡IinttopGenran.𝑡IBrB+r=BrB+r
288 280 286 287 syl2anc φr+BrB+rIinttopGenran.𝑡IBrB+r=BrB+r
289 273 288 eqtrd φr+BrB+rIintTopOpenfld𝑡DBBrB+r=BrB+r
290 51 289 eleqtrrd φr+BrB+rIBintTopOpenfld𝑡DBBrB+r
291 undif1 BrB+rBB=BrB+rB
292 ssequn2 BBrB+rBrB+rB=BrB+r
293 52 292 sylib φr+BrB+rIBrB+rB=BrB+r
294 291 293 eqtrid φr+BrB+rIBrB+rBB=BrB+r
295 294 fveq2d φr+BrB+rIintTopOpenfld𝑡DBBrB+rBB=intTopOpenfld𝑡DBBrB+r
296 290 295 eleqtrrd φr+BrB+rIBintTopOpenfld𝑡DBBrB+rBB
297 251 68 256 86 257 296 limcres φr+BrB+rIzDFzGzBrB+rBlimB=zDFzGzlimB
298 84 69 sstri BrB
299 298 a1i φr+BrB+rIBrB
300 165 69 sstri BB+r
301 300 a1i φr+BrB+rIBB+r
302 68 sselda φr+BrB+rIzBrB+rBzD
303 302 250 syldan φr+BrB+rIzBrB+rBFzGz
304 303 fmpttd φr+BrB+rIzBrB+rBFzGz:BrB+rB
305 64 feq2d φr+BrB+rIzBrB+rBFzGz:BrB+rBzBrB+rBFzGz:BrBBB+r
306 304 305 mpbid φr+BrB+rIzBrB+rBFzGz:BrBBB+r
307 299 301 306 limcun φr+BrB+rIzBrB+rBFzGzlimB=zBrB+rBFzGzBrBlimBzBrB+rBFzGzBB+rlimB
308 230 297 307 3eqtr3rd φr+BrB+rIzBrB+rBFzGzBrBlimBzBrB+rBFzGzBB+rlimB=zDFzGzlimB
309 228 308 eleqtrd φr+BrB+rICzDFzGzlimB
310 309 expr φr+BrB+rICzDFzGzlimB
311 29 310 sylbid φr+Bballabs2rICzDFzGzlimB
312 311 rexlimdva φr+Bballabs2rICzDFzGzlimB
313 20 312 mpd φCzDFzGzlimB