| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dirkercncflem3.d |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) ) ) |
| 2 |
|
dirkercncflem3.a |
⊢ 𝐴 = ( 𝑌 − π ) |
| 3 |
|
dirkercncflem3.b |
⊢ 𝐵 = ( 𝑌 + π ) |
| 4 |
|
dirkercncflem3.f |
⊢ 𝐹 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑦 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) ) |
| 5 |
|
dirkercncflem3.g |
⊢ 𝐺 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) |
| 6 |
|
dirkercncflem3.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 7 |
|
dirkercncflem3.yr |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 8 |
|
dirkercncflem3.yod |
⊢ ( 𝜑 → ( 𝑌 mod ( 2 · π ) ) = 0 ) |
| 9 |
|
oveq2 |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑁 + ( 1 / 2 ) ) · 𝑤 ) = ( ( 𝑁 + ( 1 / 2 ) ) · 𝑦 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑤 ) ) = ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑦 ) ) ) |
| 11 |
10
|
cbvmptv |
⊢ ( 𝑤 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ↦ ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑤 ) ) ) = ( 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ↦ ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑦 ) ) ) |
| 12 |
|
fvoveq1 |
⊢ ( 𝑤 = 𝑦 → ( sin ‘ ( 𝑤 / 2 ) ) = ( sin ‘ ( 𝑦 / 2 ) ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝑤 = 𝑦 → ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) = ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) |
| 14 |
13
|
cbvmptv |
⊢ ( 𝑤 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ↦ ( ( 2 · π ) · ( sin ‘ ( 𝑤 / 2 ) ) ) ) = ( 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ↦ ( ( 2 · π ) · ( sin ‘ ( 𝑦 / 2 ) ) ) ) |
| 15 |
2 3 7 8
|
dirkercncflem1 |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐴 (,) 𝐵 ) ∧ ∀ 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ( ( sin ‘ ( 𝑦 / 2 ) ) ≠ 0 ∧ ( cos ‘ ( 𝑦 / 2 ) ) ≠ 0 ) ) ) |
| 16 |
15
|
simprd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ( ( sin ‘ ( 𝑦 / 2 ) ) ≠ 0 ∧ ( cos ‘ ( 𝑦 / 2 ) ) ≠ 0 ) ) |
| 17 |
|
r19.26 |
⊢ ( ∀ 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ( ( sin ‘ ( 𝑦 / 2 ) ) ≠ 0 ∧ ( cos ‘ ( 𝑦 / 2 ) ) ≠ 0 ) ↔ ( ∀ 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ( sin ‘ ( 𝑦 / 2 ) ) ≠ 0 ∧ ∀ 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ( cos ‘ ( 𝑦 / 2 ) ) ≠ 0 ) ) |
| 18 |
16 17
|
sylib |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ( sin ‘ ( 𝑦 / 2 ) ) ≠ 0 ∧ ∀ 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ( cos ‘ ( 𝑦 / 2 ) ) ≠ 0 ) ) |
| 19 |
18
|
simpld |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ( sin ‘ ( 𝑦 / 2 ) ) ≠ 0 ) |
| 20 |
19
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ) → ( sin ‘ ( 𝑦 / 2 ) ) ≠ 0 ) |
| 21 |
9
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( cos ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑤 ) ) = ( cos ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑦 ) ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑁 + ( 1 / 2 ) ) · ( cos ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑤 ) ) ) = ( ( 𝑁 + ( 1 / 2 ) ) · ( cos ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑦 ) ) ) ) |
| 23 |
22
|
cbvmptv |
⊢ ( 𝑤 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · ( cos ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑤 ) ) ) ) = ( 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ↦ ( ( 𝑁 + ( 1 / 2 ) ) · ( cos ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑦 ) ) ) ) |
| 24 |
|
fvoveq1 |
⊢ ( 𝑤 = 𝑦 → ( cos ‘ ( 𝑤 / 2 ) ) = ( cos ‘ ( 𝑦 / 2 ) ) ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝑤 = 𝑦 → ( π · ( cos ‘ ( 𝑤 / 2 ) ) ) = ( π · ( cos ‘ ( 𝑦 / 2 ) ) ) ) |
| 26 |
25
|
cbvmptv |
⊢ ( 𝑤 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ↦ ( π · ( cos ‘ ( 𝑤 / 2 ) ) ) ) = ( 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ↦ ( π · ( cos ‘ ( 𝑦 / 2 ) ) ) ) |
| 27 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝑁 + ( 1 / 2 ) ) · ( cos ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑧 ) ) ) / ( π · ( cos ‘ ( 𝑧 / 2 ) ) ) ) ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝑁 + ( 1 / 2 ) ) · ( cos ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑧 ) ) ) / ( π · ( cos ‘ ( 𝑧 / 2 ) ) ) ) ) |
| 28 |
15
|
simpld |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 29 |
18
|
simprd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ( cos ‘ ( 𝑦 / 2 ) ) ≠ 0 ) |
| 30 |
29
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ) → ( cos ‘ ( 𝑦 / 2 ) ) ≠ 0 ) |
| 31 |
1 11 14 20 23 26 27 6 28 8 30
|
dirkercncflem2 |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑌 ) ∈ ( ( ( 𝐷 ‘ 𝑁 ) ↾ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ) limℂ 𝑌 ) ) |
| 32 |
1
|
dirkerf |
⊢ ( 𝑁 ∈ ℕ → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) |
| 33 |
6 32
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℝ ) |
| 34 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 36 |
33 35
|
fssd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝑁 ) : ℝ ⟶ ℂ ) |
| 37 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 38 |
37
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 39 |
38
|
ssdifssd |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ⊆ ℝ ) |
| 40 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 41 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ℝ ∪ { 𝑌 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ℝ ∪ { 𝑌 } ) ) |
| 42 |
|
iooretop |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) |
| 43 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 44 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 45 |
44
|
isopn3 |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) → ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ↔ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) ) |
| 46 |
43 38 45
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ↔ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) ) |
| 47 |
42 46
|
mpbii |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 48 |
28 47
|
eleqtrrd |
⊢ ( 𝜑 → 𝑌 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 49 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 50 |
49
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 51 |
50
|
fveq2d |
⊢ ( 𝜑 → ( int ‘ ( topGen ‘ ran (,) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 52 |
51
|
fveq1d |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 53 |
48 52
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 54 |
7
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ ℝ ) |
| 55 |
|
ssequn2 |
⊢ ( { 𝑌 } ⊆ ℝ ↔ ( ℝ ∪ { 𝑌 } ) = ℝ ) |
| 56 |
54 55
|
sylib |
⊢ ( 𝜑 → ( ℝ ∪ { 𝑌 } ) = ℝ ) |
| 57 |
56
|
oveq2d |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( ℝ ∪ { 𝑌 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 58 |
57
|
fveq2d |
⊢ ( 𝜑 → ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ℝ ∪ { 𝑌 } ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
| 59 |
|
uncom |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ∪ { 𝑌 } ) = ( { 𝑌 } ∪ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ) |
| 60 |
28
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 61 |
|
undif |
⊢ ( { 𝑌 } ⊆ ( 𝐴 (,) 𝐵 ) ↔ ( { 𝑌 } ∪ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 62 |
60 61
|
sylib |
⊢ ( 𝜑 → ( { 𝑌 } ∪ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 63 |
59 62
|
eqtrid |
⊢ ( 𝜑 → ( ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ∪ { 𝑌 } ) = ( 𝐴 (,) 𝐵 ) ) |
| 64 |
58 63
|
fveq12d |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ℝ ∪ { 𝑌 } ) ) ) ‘ ( ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ∪ { 𝑌 } ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 65 |
53 64
|
eleqtrrd |
⊢ ( 𝜑 → 𝑌 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ℝ ∪ { 𝑌 } ) ) ) ‘ ( ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ∪ { 𝑌 } ) ) ) |
| 66 |
36 39 35 40 41 65
|
limcres |
⊢ ( 𝜑 → ( ( ( 𝐷 ‘ 𝑁 ) ↾ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝑌 } ) ) limℂ 𝑌 ) = ( ( 𝐷 ‘ 𝑁 ) limℂ 𝑌 ) ) |
| 67 |
31 66
|
eleqtrd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑌 ) ∈ ( ( 𝐷 ‘ 𝑁 ) limℂ 𝑌 ) ) |