| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dirkerre.1 |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑠 ∈ ℝ ↦ if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) ) |
| 2 |
1
|
dirkerval2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑆 ) = if ( ( 𝑆 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑁 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑆 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑆 / 2 ) ) ) ) ) ) |
| 3 |
|
2re |
⊢ 2 ∈ ℝ |
| 4 |
3
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) |
| 5 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 6 |
4 5
|
remulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℝ ) |
| 7 |
|
1red |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) |
| 8 |
6 7
|
readdcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ∈ ℝ ) |
| 9 |
|
pire |
⊢ π ∈ ℝ |
| 10 |
9
|
a1i |
⊢ ( 𝑁 ∈ ℕ → π ∈ ℝ ) |
| 11 |
4 10
|
remulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · π ) ∈ ℝ ) |
| 12 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
| 13 |
10
|
recnd |
⊢ ( 𝑁 ∈ ℕ → π ∈ ℂ ) |
| 14 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 15 |
14
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ≠ 0 ) |
| 16 |
|
0re |
⊢ 0 ∈ ℝ |
| 17 |
|
pipos |
⊢ 0 < π |
| 18 |
16 17
|
gtneii |
⊢ π ≠ 0 |
| 19 |
18
|
a1i |
⊢ ( 𝑁 ∈ ℕ → π ≠ 0 ) |
| 20 |
12 13 15 19
|
mulne0d |
⊢ ( 𝑁 ∈ ℕ → ( 2 · π ) ≠ 0 ) |
| 21 |
8 11 20
|
redivcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) / ( 2 · π ) ) ∈ ℝ ) |
| 22 |
21
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( ( 2 · 𝑁 ) + 1 ) / ( 2 · π ) ) ∈ ℝ ) |
| 23 |
|
dirker2re |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑆 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑆 / 2 ) ) ) ) ∈ ℝ ) |
| 24 |
22 23
|
ifclda |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) → if ( ( 𝑆 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑁 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑆 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑆 / 2 ) ) ) ) ) ∈ ℝ ) |
| 25 |
2 24
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑁 ) ‘ 𝑆 ) ∈ ℝ ) |