| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 2 |
1
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → 𝑁 ∈ ℝ ) |
| 3 |
|
1red |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → 1 ∈ ℝ ) |
| 4 |
3
|
rehalfcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( 1 / 2 ) ∈ ℝ ) |
| 5 |
2 4
|
readdcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( 𝑁 + ( 1 / 2 ) ) ∈ ℝ ) |
| 6 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → 𝑆 ∈ ℝ ) |
| 7 |
5 6
|
remulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( 𝑁 + ( 1 / 2 ) ) · 𝑆 ) ∈ ℝ ) |
| 8 |
7
|
resincld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑆 ) ) ∈ ℝ ) |
| 9 |
|
2re |
⊢ 2 ∈ ℝ |
| 10 |
9
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → 2 ∈ ℝ ) |
| 11 |
|
pire |
⊢ π ∈ ℝ |
| 12 |
11
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → π ∈ ℝ ) |
| 13 |
10 12
|
remulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( 2 · π ) ∈ ℝ ) |
| 14 |
6
|
rehalfcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( 𝑆 / 2 ) ∈ ℝ ) |
| 15 |
14
|
resincld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( sin ‘ ( 𝑆 / 2 ) ) ∈ ℝ ) |
| 16 |
13 15
|
remulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( 2 · π ) · ( sin ‘ ( 𝑆 / 2 ) ) ) ∈ ℝ ) |
| 17 |
|
2cnd |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → 2 ∈ ℂ ) |
| 18 |
|
picn |
⊢ π ∈ ℂ |
| 19 |
18
|
a1i |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → π ∈ ℂ ) |
| 20 |
17 19
|
mulcld |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( 2 · π ) ∈ ℂ ) |
| 21 |
|
recn |
⊢ ( 𝑆 ∈ ℝ → 𝑆 ∈ ℂ ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → 𝑆 ∈ ℂ ) |
| 23 |
22
|
halfcld |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( 𝑆 / 2 ) ∈ ℂ ) |
| 24 |
23
|
sincld |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( sin ‘ ( 𝑆 / 2 ) ) ∈ ℂ ) |
| 25 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 26 |
25
|
a1i |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → 2 ≠ 0 ) |
| 27 |
|
0re |
⊢ 0 ∈ ℝ |
| 28 |
|
pipos |
⊢ 0 < π |
| 29 |
27 28
|
gtneii |
⊢ π ≠ 0 |
| 30 |
29
|
a1i |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → π ≠ 0 ) |
| 31 |
17 19 26 30
|
mulne0d |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( 2 · π ) ≠ 0 ) |
| 32 |
22 17 19 26 30
|
divdiv1d |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( 𝑆 / 2 ) / π ) = ( 𝑆 / ( 2 · π ) ) ) |
| 33 |
|
simpr |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) |
| 34 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 35 |
|
pirp |
⊢ π ∈ ℝ+ |
| 36 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ π ∈ ℝ+ ) → ( 2 · π ) ∈ ℝ+ ) |
| 37 |
34 35 36
|
mp2an |
⊢ ( 2 · π ) ∈ ℝ+ |
| 38 |
|
mod0 |
⊢ ( ( 𝑆 ∈ ℝ ∧ ( 2 · π ) ∈ ℝ+ ) → ( ( 𝑆 mod ( 2 · π ) ) = 0 ↔ ( 𝑆 / ( 2 · π ) ) ∈ ℤ ) ) |
| 39 |
37 38
|
mpan2 |
⊢ ( 𝑆 ∈ ℝ → ( ( 𝑆 mod ( 2 · π ) ) = 0 ↔ ( 𝑆 / ( 2 · π ) ) ∈ ℤ ) ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( 𝑆 mod ( 2 · π ) ) = 0 ↔ ( 𝑆 / ( 2 · π ) ) ∈ ℤ ) ) |
| 41 |
33 40
|
mtbid |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ¬ ( 𝑆 / ( 2 · π ) ) ∈ ℤ ) |
| 42 |
32 41
|
eqneltrd |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ¬ ( ( 𝑆 / 2 ) / π ) ∈ ℤ ) |
| 43 |
|
sineq0 |
⊢ ( ( 𝑆 / 2 ) ∈ ℂ → ( ( sin ‘ ( 𝑆 / 2 ) ) = 0 ↔ ( ( 𝑆 / 2 ) / π ) ∈ ℤ ) ) |
| 44 |
23 43
|
syl |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( sin ‘ ( 𝑆 / 2 ) ) = 0 ↔ ( ( 𝑆 / 2 ) / π ) ∈ ℤ ) ) |
| 45 |
42 44
|
mtbird |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ¬ ( sin ‘ ( 𝑆 / 2 ) ) = 0 ) |
| 46 |
45
|
neqned |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( sin ‘ ( 𝑆 / 2 ) ) ≠ 0 ) |
| 47 |
20 24 31 46
|
mulne0d |
⊢ ( ( 𝑆 ∈ ℝ ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( 2 · π ) · ( sin ‘ ( 𝑆 / 2 ) ) ) ≠ 0 ) |
| 48 |
47
|
adantll |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( 2 · π ) · ( sin ‘ ( 𝑆 / 2 ) ) ) ≠ 0 ) |
| 49 |
8 16 48
|
redivcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ℝ ) ∧ ¬ ( 𝑆 mod ( 2 · π ) ) = 0 ) → ( ( sin ‘ ( ( 𝑁 + ( 1 / 2 ) ) · 𝑆 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑆 / 2 ) ) ) ) ∈ ℝ ) |