| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem94.f |  |-  ( ph -> F : RR --> RR ) | 
						
							| 2 |  | fourierdlem94.t |  |-  T = ( 2 x. _pi ) | 
						
							| 3 |  | fourierdlem94.per |  |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 4 |  | fourierdlem94.x |  |-  ( ph -> X e. RR ) | 
						
							| 5 |  | fourierdlem94.p |  |-  P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 6 |  | fourierdlem94.m |  |-  ( ph -> M e. NN ) | 
						
							| 7 |  | fourierdlem94.q |  |-  ( ph -> Q e. ( P ` M ) ) | 
						
							| 8 |  | fourierdlem94.dvcn |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 9 |  | fourierdlem94.dvlb |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) | 
						
							| 10 |  | fourierdlem94.dvub |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) | 
						
							| 11 |  | pire |  |-  _pi e. RR | 
						
							| 12 | 11 | renegcli |  |-  -u _pi e. RR | 
						
							| 13 | 12 | a1i |  |-  ( ph -> -u _pi e. RR ) | 
						
							| 14 | 11 | a1i |  |-  ( ph -> _pi e. RR ) | 
						
							| 15 |  | negpilt0 |  |-  -u _pi < 0 | 
						
							| 16 |  | pipos |  |-  0 < _pi | 
						
							| 17 |  | 0re |  |-  0 e. RR | 
						
							| 18 | 12 17 11 | lttri |  |-  ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) | 
						
							| 19 | 15 16 18 | mp2an |  |-  -u _pi < _pi | 
						
							| 20 | 19 | a1i |  |-  ( ph -> -u _pi < _pi ) | 
						
							| 21 |  | picn |  |-  _pi e. CC | 
						
							| 22 | 21 | 2timesi |  |-  ( 2 x. _pi ) = ( _pi + _pi ) | 
						
							| 23 | 21 21 | subnegi |  |-  ( _pi - -u _pi ) = ( _pi + _pi ) | 
						
							| 24 | 22 2 23 | 3eqtr4i |  |-  T = ( _pi - -u _pi ) | 
						
							| 25 |  | ssid |  |-  RR C_ RR | 
						
							| 26 | 25 | a1i |  |-  ( ph -> RR C_ RR ) | 
						
							| 27 |  | simp2 |  |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> x e. RR ) | 
						
							| 28 |  | zre |  |-  ( k e. ZZ -> k e. RR ) | 
						
							| 29 | 28 | 3ad2ant3 |  |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> k e. RR ) | 
						
							| 30 |  | 2re |  |-  2 e. RR | 
						
							| 31 | 30 11 | remulcli |  |-  ( 2 x. _pi ) e. RR | 
						
							| 32 | 31 | a1i |  |-  ( ph -> ( 2 x. _pi ) e. RR ) | 
						
							| 33 | 2 32 | eqeltrid |  |-  ( ph -> T e. RR ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ k e. ZZ ) -> T e. RR ) | 
						
							| 35 | 34 | 3adant2 |  |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> T e. RR ) | 
						
							| 36 | 29 35 | remulcld |  |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> ( k x. T ) e. RR ) | 
						
							| 37 | 27 36 | readdcld |  |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. RR ) | 
						
							| 38 |  | simp1 |  |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> ph ) | 
						
							| 39 |  | simp3 |  |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> k e. ZZ ) | 
						
							| 40 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 41 | 40 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 42 | 1 41 | fssd |  |-  ( ph -> F : RR --> CC ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ph /\ k e. ZZ ) -> F : RR --> CC ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> F : RR --> CC ) | 
						
							| 45 | 34 | adantr |  |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> T e. RR ) | 
						
							| 46 |  | simplr |  |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> k e. ZZ ) | 
						
							| 47 |  | simpr |  |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> x e. RR ) | 
						
							| 48 |  | eleq1w |  |-  ( x = y -> ( x e. RR <-> y e. RR ) ) | 
						
							| 49 | 48 | anbi2d |  |-  ( x = y -> ( ( ph /\ x e. RR ) <-> ( ph /\ y e. RR ) ) ) | 
						
							| 50 |  | oveq1 |  |-  ( x = y -> ( x + T ) = ( y + T ) ) | 
						
							| 51 | 50 | fveq2d |  |-  ( x = y -> ( F ` ( x + T ) ) = ( F ` ( y + T ) ) ) | 
						
							| 52 |  | fveq2 |  |-  ( x = y -> ( F ` x ) = ( F ` y ) ) | 
						
							| 53 | 51 52 | eqeq12d |  |-  ( x = y -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( y + T ) ) = ( F ` y ) ) ) | 
						
							| 54 | 49 53 | imbi12d |  |-  ( x = y -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) ) ) | 
						
							| 55 | 54 3 | chvarvv |  |-  ( ( ph /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) | 
						
							| 56 | 55 | ad4ant14 |  |-  ( ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) | 
						
							| 57 | 44 45 46 47 56 | fperiodmul |  |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) | 
						
							| 58 | 38 39 27 57 | syl21anc |  |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) | 
						
							| 59 | 40 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ CC ) | 
						
							| 60 |  | ioossre |  |-  ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR | 
						
							| 61 | 60 | a1i |  |-  ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) | 
						
							| 62 | 1 61 | fssresd |  |-  ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> RR ) | 
						
							| 63 | 62 41 | fssd |  |-  ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) | 
						
							| 65 | 60 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) | 
						
							| 66 | 42 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> CC ) | 
						
							| 67 | 25 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ RR ) | 
						
							| 68 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 69 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 70 | 68 69 | dvres |  |-  ( ( ( RR C_ CC /\ F : RR --> CC ) /\ ( RR C_ RR /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 71 | 59 66 67 65 70 | syl22anc |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 72 | 71 | dmeqd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 73 |  | ioontr |  |-  ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) | 
						
							| 74 | 73 | reseq2i |  |-  ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 75 | 74 | dmeqi |  |-  dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 76 | 75 | a1i |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 77 |  | cncff |  |-  ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) | 
						
							| 78 |  | fdm |  |-  ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC -> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 79 | 8 77 78 | 3syl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 80 | 72 76 79 | 3eqtrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 81 |  | dvcn |  |-  ( ( ( RR C_ CC /\ ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) /\ dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 82 | 59 64 65 80 81 | syl31anc |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) | 
						
							| 83 | 65 40 | sstrdi |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) | 
						
							| 84 | 5 | fourierdlem2 |  |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 85 | 6 84 | syl |  |-  ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 86 | 7 85 | mpbid |  |-  ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 87 | 86 | simpld |  |-  ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) | 
						
							| 88 |  | elmapi |  |-  ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 89 | 87 88 | syl |  |-  ( ph -> Q : ( 0 ... M ) --> RR ) | 
						
							| 90 | 89 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 91 |  | elfzofz |  |-  ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) | 
						
							| 92 | 91 | adantl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) | 
						
							| 93 | 90 92 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) | 
						
							| 94 | 93 | rexrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) | 
						
							| 95 |  | fzofzp1 |  |-  ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) | 
						
							| 96 | 95 | adantl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) | 
						
							| 97 | 90 96 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) | 
						
							| 98 | 86 | simprrd |  |-  ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 99 | 98 | r19.21bi |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 100 | 68 94 97 99 | lptioo2cn |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 101 | 62 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> RR ) | 
						
							| 102 | 41 42 26 | dvbss |  |-  ( ph -> dom ( RR _D F ) C_ RR ) | 
						
							| 103 |  | dvfre |  |-  ( ( F : RR --> RR /\ RR C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) | 
						
							| 104 | 1 26 103 | syl2anc |  |-  ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) | 
						
							| 105 | 86 | simprd |  |-  ( ph -> ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) | 
						
							| 106 | 105 | simplld |  |-  ( ph -> ( Q ` 0 ) = -u _pi ) | 
						
							| 107 | 105 | simplrd |  |-  ( ph -> ( Q ` M ) = _pi ) | 
						
							| 108 | 8 77 | syl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) | 
						
							| 109 | 97 | rexrd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) | 
						
							| 110 | 68 109 93 99 | lptioo1cn |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 111 | 108 83 110 9 68 | ellimciota |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota x x e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 112 | 108 83 100 10 68 | ellimciota |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota x x e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 113 | 28 | adantl |  |-  ( ( ph /\ k e. ZZ ) -> k e. RR ) | 
						
							| 114 | 113 34 | remulcld |  |-  ( ( ph /\ k e. ZZ ) -> ( k x. T ) e. RR ) | 
						
							| 115 | 43 | adantr |  |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> F : RR --> CC ) | 
						
							| 116 | 34 | adantr |  |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> T e. RR ) | 
						
							| 117 |  | simplr |  |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> k e. ZZ ) | 
						
							| 118 |  | simpr |  |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> t e. RR ) | 
						
							| 119 | 3 | ad4ant14 |  |-  ( ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) | 
						
							| 120 | 115 116 117 118 119 | fperiodmul |  |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> ( F ` ( t + ( k x. T ) ) ) = ( F ` t ) ) | 
						
							| 121 |  | eqid |  |-  ( RR _D F ) = ( RR _D F ) | 
						
							| 122 | 43 114 120 121 | fperdvper |  |-  ( ( ( ph /\ k e. ZZ ) /\ t e. dom ( RR _D F ) ) -> ( ( t + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) ) | 
						
							| 123 | 122 | an32s |  |-  ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( ( t + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) ) | 
						
							| 124 | 123 | simpld |  |-  ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( t + ( k x. T ) ) e. dom ( RR _D F ) ) | 
						
							| 125 | 123 | simprd |  |-  ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) | 
						
							| 126 |  | fveq2 |  |-  ( j = i -> ( Q ` j ) = ( Q ` i ) ) | 
						
							| 127 |  | oveq1 |  |-  ( j = i -> ( j + 1 ) = ( i + 1 ) ) | 
						
							| 128 | 127 | fveq2d |  |-  ( j = i -> ( Q ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) | 
						
							| 129 | 126 128 | oveq12d |  |-  ( j = i -> ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 130 | 129 | cbvmptv |  |-  ( j e. ( 0 ..^ M ) |-> ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) = ( i e. ( 0 ..^ M ) |-> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 131 |  | eqid |  |-  ( t e. RR |-> ( t + ( ( |_ ` ( ( _pi - t ) / T ) ) x. T ) ) ) = ( t e. RR |-> ( t + ( ( |_ ` ( ( _pi - t ) / T ) ) x. T ) ) ) | 
						
							| 132 | 102 104 13 14 20 24 6 89 106 107 8 111 112 124 125 130 131 | fourierdlem71 |  |-  ( ph -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 133 | 132 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 134 |  | nfv |  |-  F/ t ( ph /\ i e. ( 0 ..^ M ) ) | 
						
							| 135 |  | nfra1 |  |-  F/ t A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z | 
						
							| 136 | 134 135 | nfan |  |-  F/ t ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 137 | 71 74 | eqtrdi |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 138 | 137 | fveq1d |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) = ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` t ) ) | 
						
							| 139 |  | fvres |  |-  ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) | 
						
							| 140 | 138 139 | sylan9eq |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) | 
						
							| 141 | 140 | fveq2d |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) | 
						
							| 142 | 141 | adantlr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) | 
						
							| 143 |  | simplr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 144 |  | ssdmres |  |-  ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 145 | 79 144 | sylibr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) ) | 
						
							| 146 | 145 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) ) | 
						
							| 147 |  | simpr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 148 | 146 147 | sseldd |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> t e. dom ( RR _D F ) ) | 
						
							| 149 |  | rspa |  |-  ( ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z /\ t e. dom ( RR _D F ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 150 | 143 148 149 | syl2anc |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) | 
						
							| 151 | 142 150 | eqbrtrd |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) | 
						
							| 152 | 151 | ex |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) | 
						
							| 153 | 136 152 | ralrimi |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) | 
						
							| 154 | 153 | ex |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) | 
						
							| 155 | 154 | reximdv |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> E. z e. RR A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) | 
						
							| 156 | 133 155 | mpd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. z e. RR A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) | 
						
							| 157 | 93 97 101 80 156 | ioodvbdlimc2 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) | 
						
							| 158 | 64 83 100 157 68 | ellimciota |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota y y e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) | 
						
							| 159 |  | oveq2 |  |-  ( y = x -> ( _pi - y ) = ( _pi - x ) ) | 
						
							| 160 | 159 | oveq1d |  |-  ( y = x -> ( ( _pi - y ) / T ) = ( ( _pi - x ) / T ) ) | 
						
							| 161 | 160 | fveq2d |  |-  ( y = x -> ( |_ ` ( ( _pi - y ) / T ) ) = ( |_ ` ( ( _pi - x ) / T ) ) ) | 
						
							| 162 | 161 | oveq1d |  |-  ( y = x -> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) = ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) | 
						
							| 163 | 162 | cbvmptv |  |-  ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) = ( x e. RR |-> ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) | 
						
							| 164 |  | id |  |-  ( z = x -> z = x ) | 
						
							| 165 |  | fveq2 |  |-  ( z = x -> ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) = ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) | 
						
							| 166 | 164 165 | oveq12d |  |-  ( z = x -> ( z + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) ) = ( x + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) ) | 
						
							| 167 | 166 | cbvmptv |  |-  ( z e. RR |-> ( z + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) ) ) = ( x e. RR |-> ( x + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) ) | 
						
							| 168 | 13 14 20 5 24 6 7 26 1 37 58 82 158 4 163 167 | fourierdlem49 |  |-  ( ph -> ( ( F |` ( -oo (,) X ) ) limCC X ) =/= (/) ) | 
						
							| 169 | 93 97 101 80 156 | ioodvbdlimc1 |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) | 
						
							| 170 | 64 83 110 169 68 | ellimciota |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota y y e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) | 
						
							| 171 |  | biid |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ w = ( X + ( k x. T ) ) ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ w = ( X + ( k x. T ) ) ) ) | 
						
							| 172 | 13 14 20 5 24 6 7 1 37 58 82 170 4 163 167 171 | fourierdlem48 |  |-  ( ph -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) | 
						
							| 173 | 168 172 | jca |  |-  ( ph -> ( ( ( F |` ( -oo (,) X ) ) limCC X ) =/= (/) /\ ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) ) |