| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fperdvper.f |
|- ( ph -> F : RR --> CC ) |
| 2 |
|
fperdvper.t |
|- ( ph -> T e. RR ) |
| 3 |
|
fperdvper.fper |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 4 |
|
fperdvper.g |
|- G = ( RR _D F ) |
| 5 |
|
dvbsss |
|- dom ( RR _D F ) C_ RR |
| 6 |
|
id |
|- ( x e. dom G -> x e. dom G ) |
| 7 |
4
|
dmeqi |
|- dom G = dom ( RR _D F ) |
| 8 |
6 7
|
eleqtrdi |
|- ( x e. dom G -> x e. dom ( RR _D F ) ) |
| 9 |
5 8
|
sselid |
|- ( x e. dom G -> x e. RR ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ x e. dom G ) -> x e. RR ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ x e. dom G ) -> T e. RR ) |
| 12 |
10 11
|
readdcld |
|- ( ( ph /\ x e. dom G ) -> ( x + T ) e. RR ) |
| 13 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
| 14 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 15 |
|
ssidd |
|- ( ( ph /\ x e. dom G ) -> RR C_ RR ) |
| 16 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 17 |
16
|
isopn3 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ RR C_ RR ) -> ( RR e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` RR ) = RR ) ) |
| 18 |
14 15 17
|
sylancr |
|- ( ( ph /\ x e. dom G ) -> ( RR e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` RR ) = RR ) ) |
| 19 |
13 18
|
mpbii |
|- ( ( ph /\ x e. dom G ) -> ( ( int ` ( topGen ` ran (,) ) ) ` RR ) = RR ) |
| 20 |
19
|
eqcomd |
|- ( ( ph /\ x e. dom G ) -> RR = ( ( int ` ( topGen ` ran (,) ) ) ` RR ) ) |
| 21 |
12 20
|
eleqtrd |
|- ( ( ph /\ x e. dom G ) -> ( x + T ) e. ( ( int ` ( topGen ` ran (,) ) ) ` RR ) ) |
| 22 |
8
|
adantl |
|- ( ( ph /\ x e. dom G ) -> x e. dom ( RR _D F ) ) |
| 23 |
4
|
fveq1i |
|- ( G ` x ) = ( ( RR _D F ) ` x ) |
| 24 |
23
|
eqcomi |
|- ( ( RR _D F ) ` x ) = ( G ` x ) |
| 25 |
24
|
a1i |
|- ( ( ph /\ x e. dom G ) -> ( ( RR _D F ) ` x ) = ( G ` x ) ) |
| 26 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
| 27 |
|
ffun |
|- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> Fun ( RR _D F ) ) |
| 28 |
26 27
|
ax-mp |
|- Fun ( RR _D F ) |
| 29 |
28
|
a1i |
|- ( ph -> Fun ( RR _D F ) ) |
| 30 |
|
funbrfv2b |
|- ( Fun ( RR _D F ) -> ( x ( RR _D F ) ( G ` x ) <-> ( x e. dom ( RR _D F ) /\ ( ( RR _D F ) ` x ) = ( G ` x ) ) ) ) |
| 31 |
29 30
|
syl |
|- ( ph -> ( x ( RR _D F ) ( G ` x ) <-> ( x e. dom ( RR _D F ) /\ ( ( RR _D F ) ` x ) = ( G ` x ) ) ) ) |
| 32 |
31
|
adantr |
|- ( ( ph /\ x e. dom G ) -> ( x ( RR _D F ) ( G ` x ) <-> ( x e. dom ( RR _D F ) /\ ( ( RR _D F ) ` x ) = ( G ` x ) ) ) ) |
| 33 |
22 25 32
|
mpbir2and |
|- ( ( ph /\ x e. dom G ) -> x ( RR _D F ) ( G ` x ) ) |
| 34 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 35 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 36 |
|
eqid |
|- ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) = ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) |
| 37 |
|
ax-resscn |
|- RR C_ CC |
| 38 |
37
|
a1i |
|- ( ( ph /\ x e. dom G ) -> RR C_ CC ) |
| 39 |
1
|
adantr |
|- ( ( ph /\ x e. dom G ) -> F : RR --> CC ) |
| 40 |
34 35 36 38 39 15
|
eldv |
|- ( ( ph /\ x e. dom G ) -> ( x ( RR _D F ) ( G ` x ) <-> ( x e. ( ( int ` ( topGen ` ran (,) ) ) ` RR ) /\ ( G ` x ) e. ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) ) ) ) |
| 41 |
33 40
|
mpbid |
|- ( ( ph /\ x e. dom G ) -> ( x e. ( ( int ` ( topGen ` ran (,) ) ) ` RR ) /\ ( G ` x ) e. ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) ) ) |
| 42 |
41
|
simprd |
|- ( ( ph /\ x e. dom G ) -> ( G ` x ) e. ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) ) |
| 43 |
|
eqidd |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) = ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ) |
| 44 |
|
fveq2 |
|- ( y = d -> ( F ` y ) = ( F ` d ) ) |
| 45 |
44
|
oveq1d |
|- ( y = d -> ( ( F ` y ) - ( F ` ( x + T ) ) ) = ( ( F ` d ) - ( F ` ( x + T ) ) ) ) |
| 46 |
|
oveq1 |
|- ( y = d -> ( y - ( x + T ) ) = ( d - ( x + T ) ) ) |
| 47 |
45 46
|
oveq12d |
|- ( y = d -> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) = ( ( ( F ` d ) - ( F ` ( x + T ) ) ) / ( d - ( x + T ) ) ) ) |
| 48 |
|
eldifi |
|- ( d e. ( RR \ { ( x + T ) } ) -> d e. RR ) |
| 49 |
48
|
recnd |
|- ( d e. ( RR \ { ( x + T ) } ) -> d e. CC ) |
| 50 |
49
|
adantl |
|- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> d e. CC ) |
| 51 |
2
|
recnd |
|- ( ph -> T e. CC ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> T e. CC ) |
| 53 |
50 52
|
npcand |
|- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( d - T ) + T ) = d ) |
| 54 |
53
|
eqcomd |
|- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> d = ( ( d - T ) + T ) ) |
| 55 |
54
|
fveq2d |
|- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` d ) = ( F ` ( ( d - T ) + T ) ) ) |
| 56 |
|
ovex |
|- ( d - T ) e. _V |
| 57 |
48
|
adantl |
|- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> d e. RR ) |
| 58 |
2
|
adantr |
|- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> T e. RR ) |
| 59 |
57 58
|
resubcld |
|- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - T ) e. RR ) |
| 60 |
59
|
ex |
|- ( ph -> ( d e. ( RR \ { ( x + T ) } ) -> ( d - T ) e. RR ) ) |
| 61 |
60
|
imdistani |
|- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ph /\ ( d - T ) e. RR ) ) |
| 62 |
|
eleq1 |
|- ( x = ( d - T ) -> ( x e. RR <-> ( d - T ) e. RR ) ) |
| 63 |
62
|
anbi2d |
|- ( x = ( d - T ) -> ( ( ph /\ x e. RR ) <-> ( ph /\ ( d - T ) e. RR ) ) ) |
| 64 |
|
fvoveq1 |
|- ( x = ( d - T ) -> ( F ` ( x + T ) ) = ( F ` ( ( d - T ) + T ) ) ) |
| 65 |
|
fveq2 |
|- ( x = ( d - T ) -> ( F ` x ) = ( F ` ( d - T ) ) ) |
| 66 |
64 65
|
eqeq12d |
|- ( x = ( d - T ) -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( ( d - T ) + T ) ) = ( F ` ( d - T ) ) ) ) |
| 67 |
63 66
|
imbi12d |
|- ( x = ( d - T ) -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ ( d - T ) e. RR ) -> ( F ` ( ( d - T ) + T ) ) = ( F ` ( d - T ) ) ) ) ) |
| 68 |
67 3
|
vtoclg |
|- ( ( d - T ) e. _V -> ( ( ph /\ ( d - T ) e. RR ) -> ( F ` ( ( d - T ) + T ) ) = ( F ` ( d - T ) ) ) ) |
| 69 |
56 61 68
|
mpsyl |
|- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` ( ( d - T ) + T ) ) = ( F ` ( d - T ) ) ) |
| 70 |
55 69
|
eqtrd |
|- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` d ) = ( F ` ( d - T ) ) ) |
| 71 |
70
|
adantlr |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` d ) = ( F ` ( d - T ) ) ) |
| 72 |
|
simpll |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ph ) |
| 73 |
9
|
ad2antlr |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> x e. RR ) |
| 74 |
72 73 3
|
syl2anc |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 75 |
71 74
|
oveq12d |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( F ` d ) - ( F ` ( x + T ) ) ) = ( ( F ` ( d - T ) ) - ( F ` x ) ) ) |
| 76 |
49
|
adantl |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> d e. CC ) |
| 77 |
72 51
|
syl |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> T e. CC ) |
| 78 |
10
|
recnd |
|- ( ( ph /\ x e. dom G ) -> x e. CC ) |
| 79 |
78
|
adantr |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> x e. CC ) |
| 80 |
76 77 79
|
subsub4d |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( d - T ) - x ) = ( d - ( T + x ) ) ) |
| 81 |
77 79
|
addcomd |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( T + x ) = ( x + T ) ) |
| 82 |
81
|
oveq2d |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - ( T + x ) ) = ( d - ( x + T ) ) ) |
| 83 |
80 82
|
eqtr2d |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - ( x + T ) ) = ( ( d - T ) - x ) ) |
| 84 |
75 83
|
oveq12d |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( ( F ` d ) - ( F ` ( x + T ) ) ) / ( d - ( x + T ) ) ) = ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) ) |
| 85 |
47 84
|
sylan9eqr |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ y = d ) -> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) = ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) ) |
| 86 |
|
simpr |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> d e. ( RR \ { ( x + T ) } ) ) |
| 87 |
1
|
adantr |
|- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> F : RR --> CC ) |
| 88 |
87 59
|
ffvelcdmd |
|- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` ( d - T ) ) e. CC ) |
| 89 |
88
|
adantlr |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` ( d - T ) ) e. CC ) |
| 90 |
39 10
|
ffvelcdmd |
|- ( ( ph /\ x e. dom G ) -> ( F ` x ) e. CC ) |
| 91 |
90
|
adantr |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` x ) e. CC ) |
| 92 |
89 91
|
subcld |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( F ` ( d - T ) ) - ( F ` x ) ) e. CC ) |
| 93 |
76 77
|
subcld |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - T ) e. CC ) |
| 94 |
93 79
|
subcld |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( d - T ) - x ) e. CC ) |
| 95 |
|
simpr |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> ( d - T ) = x ) |
| 96 |
49
|
ad2antlr |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> d e. CC ) |
| 97 |
77
|
adantr |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> T e. CC ) |
| 98 |
79
|
adantr |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> x e. CC ) |
| 99 |
96 97 98
|
subadd2d |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> ( ( d - T ) = x <-> ( x + T ) = d ) ) |
| 100 |
95 99
|
mpbid |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> ( x + T ) = d ) |
| 101 |
100
|
eqcomd |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> d = ( x + T ) ) |
| 102 |
|
eldifsni |
|- ( d e. ( RR \ { ( x + T ) } ) -> d =/= ( x + T ) ) |
| 103 |
102
|
ad2antlr |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> d =/= ( x + T ) ) |
| 104 |
103
|
neneqd |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> -. d = ( x + T ) ) |
| 105 |
101 104
|
pm2.65da |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> -. ( d - T ) = x ) |
| 106 |
105
|
neqned |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - T ) =/= x ) |
| 107 |
93 79 106
|
subne0d |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( d - T ) - x ) =/= 0 ) |
| 108 |
92 94 107
|
divcld |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) e. CC ) |
| 109 |
43 85 86 108
|
fvmptd |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) = ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) ) |
| 110 |
109
|
fvoveq1d |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) = ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) ) |
| 111 |
110
|
ad4ant13 |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) = ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) ) |
| 112 |
|
neeq1 |
|- ( c = ( d - T ) -> ( c =/= x <-> ( d - T ) =/= x ) ) |
| 113 |
|
fvoveq1 |
|- ( c = ( d - T ) -> ( abs ` ( c - x ) ) = ( abs ` ( ( d - T ) - x ) ) ) |
| 114 |
113
|
breq1d |
|- ( c = ( d - T ) -> ( ( abs ` ( c - x ) ) < b <-> ( abs ` ( ( d - T ) - x ) ) < b ) ) |
| 115 |
112 114
|
anbi12d |
|- ( c = ( d - T ) -> ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) <-> ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) ) ) |
| 116 |
115
|
imbrov2fvoveq |
|- ( c = ( d - T ) -> ( ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) <-> ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) ) |
| 117 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) |
| 118 |
48
|
ad2antlr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> d e. RR ) |
| 119 |
2
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> T e. RR ) |
| 120 |
118 119
|
resubcld |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( d - T ) e. RR ) |
| 121 |
|
elsni |
|- ( ( d - T ) e. { x } -> ( d - T ) = x ) |
| 122 |
105 121
|
nsyl |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> -. ( d - T ) e. { x } ) |
| 123 |
122
|
ad4ant13 |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> -. ( d - T ) e. { x } ) |
| 124 |
120 123
|
eldifd |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( d - T ) e. ( RR \ { x } ) ) |
| 125 |
116 117 124
|
rspcdva |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) |
| 126 |
|
eqidd |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) = ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ) |
| 127 |
|
simpr |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ y = ( d - T ) ) -> y = ( d - T ) ) |
| 128 |
127
|
fveq2d |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ y = ( d - T ) ) -> ( F ` y ) = ( F ` ( d - T ) ) ) |
| 129 |
128
|
oveq1d |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ y = ( d - T ) ) -> ( ( F ` y ) - ( F ` x ) ) = ( ( F ` ( d - T ) ) - ( F ` x ) ) ) |
| 130 |
127
|
oveq1d |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ y = ( d - T ) ) -> ( y - x ) = ( ( d - T ) - x ) ) |
| 131 |
129 130
|
oveq12d |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ y = ( d - T ) ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) = ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) ) |
| 132 |
48
|
adantl |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> d e. RR ) |
| 133 |
72 2
|
syl |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> T e. RR ) |
| 134 |
132 133
|
resubcld |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - T ) e. RR ) |
| 135 |
134 122
|
eldifd |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - T ) e. ( RR \ { x } ) ) |
| 136 |
126 131 135 108
|
fvmptd |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) = ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) ) |
| 137 |
136
|
eqcomd |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) = ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) ) |
| 138 |
137
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) /\ ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) -> ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) = ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) ) |
| 139 |
138
|
fvoveq1d |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) /\ ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) -> ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) = ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) ) |
| 140 |
106
|
adantr |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( d - T ) =/= x ) |
| 141 |
83
|
eqcomd |
|- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( d - T ) - x ) = ( d - ( x + T ) ) ) |
| 142 |
141
|
adantr |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( ( d - T ) - x ) = ( d - ( x + T ) ) ) |
| 143 |
142
|
fveq2d |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( d - T ) - x ) ) = ( abs ` ( d - ( x + T ) ) ) ) |
| 144 |
|
simpr |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( d - ( x + T ) ) ) < b ) |
| 145 |
143 144
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( d - T ) - x ) ) < b ) |
| 146 |
140 145
|
jca |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) ) |
| 147 |
146
|
adantr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) /\ ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) -> ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) ) |
| 148 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) /\ ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) -> ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) |
| 149 |
147 148
|
mpd |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) /\ ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) |
| 150 |
139 149
|
eqbrtrd |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) /\ ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) -> ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) < a ) |
| 151 |
150
|
ex |
|- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) -> ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) < a ) ) |
| 152 |
151
|
adantllr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) -> ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) < a ) ) |
| 153 |
125 152
|
mpd |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) < a ) |
| 154 |
153
|
adantrl |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) ) -> ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) < a ) |
| 155 |
111 154
|
eqbrtrd |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) |
| 156 |
155
|
ex |
|- ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) |
| 157 |
156
|
ralrimiva |
|- ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) -> A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) |
| 158 |
|
eqidd |
|- ( c e. ( RR \ { x } ) -> ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) = ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ) |
| 159 |
|
fveq2 |
|- ( y = c -> ( F ` y ) = ( F ` c ) ) |
| 160 |
159
|
oveq1d |
|- ( y = c -> ( ( F ` y ) - ( F ` x ) ) = ( ( F ` c ) - ( F ` x ) ) ) |
| 161 |
|
oveq1 |
|- ( y = c -> ( y - x ) = ( c - x ) ) |
| 162 |
160 161
|
oveq12d |
|- ( y = c -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) = ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) ) |
| 163 |
162
|
adantl |
|- ( ( c e. ( RR \ { x } ) /\ y = c ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) = ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) ) |
| 164 |
|
id |
|- ( c e. ( RR \ { x } ) -> c e. ( RR \ { x } ) ) |
| 165 |
|
ovexd |
|- ( c e. ( RR \ { x } ) -> ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) e. _V ) |
| 166 |
158 163 164 165
|
fvmptd |
|- ( c e. ( RR \ { x } ) -> ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) = ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) ) |
| 167 |
166
|
fvoveq1d |
|- ( c e. ( RR \ { x } ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) = ( abs ` ( ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) - w ) ) ) |
| 168 |
167
|
ad2antlr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( c =/= x /\ ( abs ` ( c - x ) ) < b ) ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) = ( abs ` ( ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) - w ) ) ) |
| 169 |
|
simpll |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ph ) |
| 170 |
|
eldifi |
|- ( c e. ( RR \ { x } ) -> c e. RR ) |
| 171 |
170
|
adantl |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> c e. RR ) |
| 172 |
|
eleq1 |
|- ( x = c -> ( x e. RR <-> c e. RR ) ) |
| 173 |
172
|
anbi2d |
|- ( x = c -> ( ( ph /\ x e. RR ) <-> ( ph /\ c e. RR ) ) ) |
| 174 |
|
fvoveq1 |
|- ( x = c -> ( F ` ( x + T ) ) = ( F ` ( c + T ) ) ) |
| 175 |
|
fveq2 |
|- ( x = c -> ( F ` x ) = ( F ` c ) ) |
| 176 |
174 175
|
eqeq12d |
|- ( x = c -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( c + T ) ) = ( F ` c ) ) ) |
| 177 |
173 176
|
imbi12d |
|- ( x = c -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ c e. RR ) -> ( F ` ( c + T ) ) = ( F ` c ) ) ) ) |
| 178 |
177 3
|
chvarvv |
|- ( ( ph /\ c e. RR ) -> ( F ` ( c + T ) ) = ( F ` c ) ) |
| 179 |
178
|
eqcomd |
|- ( ( ph /\ c e. RR ) -> ( F ` c ) = ( F ` ( c + T ) ) ) |
| 180 |
169 171 179
|
syl2anc |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( F ` c ) = ( F ` ( c + T ) ) ) |
| 181 |
9
|
ad2antlr |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> x e. RR ) |
| 182 |
169 181 3
|
syl2anc |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 183 |
182
|
eqcomd |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( F ` x ) = ( F ` ( x + T ) ) ) |
| 184 |
180 183
|
oveq12d |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( ( F ` c ) - ( F ` x ) ) = ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) ) |
| 185 |
171
|
recnd |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> c e. CC ) |
| 186 |
78
|
adantr |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> x e. CC ) |
| 187 |
169 51
|
syl |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> T e. CC ) |
| 188 |
185 186 187
|
pnpcan2d |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( ( c + T ) - ( x + T ) ) = ( c - x ) ) |
| 189 |
188
|
eqcomd |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( c - x ) = ( ( c + T ) - ( x + T ) ) ) |
| 190 |
184 189
|
oveq12d |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) = ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) ) |
| 191 |
190
|
fvoveq1d |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( abs ` ( ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) - w ) ) = ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) ) |
| 192 |
191
|
ad4ant13 |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) - w ) ) = ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) ) |
| 193 |
|
neeq1 |
|- ( d = ( c + T ) -> ( d =/= ( x + T ) <-> ( c + T ) =/= ( x + T ) ) ) |
| 194 |
|
fvoveq1 |
|- ( d = ( c + T ) -> ( abs ` ( d - ( x + T ) ) ) = ( abs ` ( ( c + T ) - ( x + T ) ) ) ) |
| 195 |
194
|
breq1d |
|- ( d = ( c + T ) -> ( ( abs ` ( d - ( x + T ) ) ) < b <-> ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) ) |
| 196 |
193 195
|
anbi12d |
|- ( d = ( c + T ) -> ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) <-> ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) ) ) |
| 197 |
196
|
imbrov2fvoveq |
|- ( d = ( c + T ) -> ( ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) <-> ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) ) |
| 198 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) |
| 199 |
170
|
ad2antlr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> c e. RR ) |
| 200 |
2
|
ad4antr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> T e. RR ) |
| 201 |
199 200
|
readdcld |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( c + T ) e. RR ) |
| 202 |
|
eldifsni |
|- ( c e. ( RR \ { x } ) -> c =/= x ) |
| 203 |
202
|
adantl |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> c =/= x ) |
| 204 |
185 186 187 203
|
addneintr2d |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( c + T ) =/= ( x + T ) ) |
| 205 |
204
|
ad4ant13 |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( c + T ) =/= ( x + T ) ) |
| 206 |
|
nelsn |
|- ( ( c + T ) =/= ( x + T ) -> -. ( c + T ) e. { ( x + T ) } ) |
| 207 |
205 206
|
syl |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> -. ( c + T ) e. { ( x + T ) } ) |
| 208 |
201 207
|
eldifd |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( c + T ) e. ( RR \ { ( x + T ) } ) ) |
| 209 |
197 198 208
|
rspcdva |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) |
| 210 |
|
eqidd |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) = ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ) |
| 211 |
|
fveq2 |
|- ( y = ( c + T ) -> ( F ` y ) = ( F ` ( c + T ) ) ) |
| 212 |
211
|
oveq1d |
|- ( y = ( c + T ) -> ( ( F ` y ) - ( F ` ( x + T ) ) ) = ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) ) |
| 213 |
|
oveq1 |
|- ( y = ( c + T ) -> ( y - ( x + T ) ) = ( ( c + T ) - ( x + T ) ) ) |
| 214 |
212 213
|
oveq12d |
|- ( y = ( c + T ) -> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) = ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) ) |
| 215 |
214
|
adantl |
|- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ y = ( c + T ) ) -> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) = ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) ) |
| 216 |
169 2
|
syl |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> T e. RR ) |
| 217 |
171 216
|
readdcld |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( c + T ) e. RR ) |
| 218 |
204 206
|
syl |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> -. ( c + T ) e. { ( x + T ) } ) |
| 219 |
217 218
|
eldifd |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( c + T ) e. ( RR \ { ( x + T ) } ) ) |
| 220 |
|
ovexd |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) e. _V ) |
| 221 |
210 215 219 220
|
fvmptd |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) = ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) ) |
| 222 |
221
|
eqcomd |
|- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) = ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) ) |
| 223 |
222
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) /\ ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) -> ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) = ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) ) |
| 224 |
223
|
fvoveq1d |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) /\ ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) -> ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) = ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) ) |
| 225 |
204
|
adantr |
|- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( c + T ) =/= ( x + T ) ) |
| 226 |
170
|
recnd |
|- ( c e. ( RR \ { x } ) -> c e. CC ) |
| 227 |
226
|
ad2antlr |
|- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> c e. CC ) |
| 228 |
186
|
adantr |
|- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> x e. CC ) |
| 229 |
187
|
adantr |
|- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> T e. CC ) |
| 230 |
227 228 229
|
pnpcan2d |
|- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( ( c + T ) - ( x + T ) ) = ( c - x ) ) |
| 231 |
230
|
fveq2d |
|- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( c + T ) - ( x + T ) ) ) = ( abs ` ( c - x ) ) ) |
| 232 |
|
simpr |
|- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( c - x ) ) < b ) |
| 233 |
231 232
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) |
| 234 |
225 233
|
jca |
|- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) ) |
| 235 |
234
|
adantr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) /\ ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) -> ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) ) |
| 236 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) /\ ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) -> ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) |
| 237 |
235 236
|
mpd |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) /\ ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) |
| 238 |
224 237
|
eqbrtrd |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) /\ ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) -> ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) < a ) |
| 239 |
238
|
ex |
|- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) -> ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) < a ) ) |
| 240 |
239
|
adantllr |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) -> ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) < a ) ) |
| 241 |
209 240
|
mpd |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) < a ) |
| 242 |
192 241
|
eqbrtrd |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) - w ) ) < a ) |
| 243 |
242
|
adantrl |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( c =/= x /\ ( abs ` ( c - x ) ) < b ) ) -> ( abs ` ( ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) - w ) ) < a ) |
| 244 |
168 243
|
eqbrtrd |
|- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( c =/= x /\ ( abs ` ( c - x ) ) < b ) ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) |
| 245 |
244
|
ex |
|- ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) -> ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) |
| 246 |
245
|
ralrimiva |
|- ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) -> A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) |
| 247 |
157 246
|
impbida |
|- ( ( ph /\ x e. dom G ) -> ( A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) <-> A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) ) |
| 248 |
247
|
rexbidv |
|- ( ( ph /\ x e. dom G ) -> ( E. b e. RR+ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) <-> E. b e. RR+ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) ) |
| 249 |
248
|
ralbidv |
|- ( ( ph /\ x e. dom G ) -> ( A. a e. RR+ E. b e. RR+ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) <-> A. a e. RR+ E. b e. RR+ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) ) |
| 250 |
249
|
anbi2d |
|- ( ( ph /\ x e. dom G ) -> ( ( w e. CC /\ A. a e. RR+ E. b e. RR+ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) <-> ( w e. CC /\ A. a e. RR+ E. b e. RR+ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) ) ) |
| 251 |
39 38 10
|
dvlem |
|- ( ( ( ph /\ x e. dom G ) /\ y e. ( RR \ { x } ) ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. CC ) |
| 252 |
251
|
fmpttd |
|- ( ( ph /\ x e. dom G ) -> ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) : ( RR \ { x } ) --> CC ) |
| 253 |
38
|
ssdifssd |
|- ( ( ph /\ x e. dom G ) -> ( RR \ { x } ) C_ CC ) |
| 254 |
252 253 78
|
ellimc3 |
|- ( ( ph /\ x e. dom G ) -> ( w e. ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) <-> ( w e. CC /\ A. a e. RR+ E. b e. RR+ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) ) ) |
| 255 |
39 38 12
|
dvlem |
|- ( ( ( ph /\ x e. dom G ) /\ y e. ( RR \ { ( x + T ) } ) ) -> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) e. CC ) |
| 256 |
255
|
fmpttd |
|- ( ( ph /\ x e. dom G ) -> ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) : ( RR \ { ( x + T ) } ) --> CC ) |
| 257 |
38
|
ssdifssd |
|- ( ( ph /\ x e. dom G ) -> ( RR \ { ( x + T ) } ) C_ CC ) |
| 258 |
12
|
recnd |
|- ( ( ph /\ x e. dom G ) -> ( x + T ) e. CC ) |
| 259 |
256 257 258
|
ellimc3 |
|- ( ( ph /\ x e. dom G ) -> ( w e. ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) limCC ( x + T ) ) <-> ( w e. CC /\ A. a e. RR+ E. b e. RR+ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) ) ) |
| 260 |
250 254 259
|
3bitr4d |
|- ( ( ph /\ x e. dom G ) -> ( w e. ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) <-> w e. ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) limCC ( x + T ) ) ) ) |
| 261 |
260
|
eqrdv |
|- ( ( ph /\ x e. dom G ) -> ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) = ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) limCC ( x + T ) ) ) |
| 262 |
|
fveq2 |
|- ( y = z -> ( F ` y ) = ( F ` z ) ) |
| 263 |
262
|
oveq1d |
|- ( y = z -> ( ( F ` y ) - ( F ` ( x + T ) ) ) = ( ( F ` z ) - ( F ` ( x + T ) ) ) ) |
| 264 |
|
oveq1 |
|- ( y = z -> ( y - ( x + T ) ) = ( z - ( x + T ) ) ) |
| 265 |
263 264
|
oveq12d |
|- ( y = z -> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) = ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) |
| 266 |
265
|
cbvmptv |
|- ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) = ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) |
| 267 |
266
|
oveq1i |
|- ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) limCC ( x + T ) ) = ( ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) limCC ( x + T ) ) |
| 268 |
261 267
|
eqtrdi |
|- ( ( ph /\ x e. dom G ) -> ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) = ( ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) limCC ( x + T ) ) ) |
| 269 |
42 268
|
eleqtrd |
|- ( ( ph /\ x e. dom G ) -> ( G ` x ) e. ( ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) limCC ( x + T ) ) ) |
| 270 |
|
eqid |
|- ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) = ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) |
| 271 |
37
|
a1i |
|- ( ph -> RR C_ CC ) |
| 272 |
|
ssidd |
|- ( ph -> RR C_ RR ) |
| 273 |
34 35 270 271 1 272
|
eldv |
|- ( ph -> ( ( x + T ) ( RR _D F ) ( G ` x ) <-> ( ( x + T ) e. ( ( int ` ( topGen ` ran (,) ) ) ` RR ) /\ ( G ` x ) e. ( ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) limCC ( x + T ) ) ) ) ) |
| 274 |
273
|
adantr |
|- ( ( ph /\ x e. dom G ) -> ( ( x + T ) ( RR _D F ) ( G ` x ) <-> ( ( x + T ) e. ( ( int ` ( topGen ` ran (,) ) ) ` RR ) /\ ( G ` x ) e. ( ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) limCC ( x + T ) ) ) ) ) |
| 275 |
21 269 274
|
mpbir2and |
|- ( ( ph /\ x e. dom G ) -> ( x + T ) ( RR _D F ) ( G ` x ) ) |
| 276 |
4
|
a1i |
|- ( ( ph /\ x e. dom G ) -> G = ( RR _D F ) ) |
| 277 |
276
|
breqd |
|- ( ( ph /\ x e. dom G ) -> ( ( x + T ) G ( G ` x ) <-> ( x + T ) ( RR _D F ) ( G ` x ) ) ) |
| 278 |
275 277
|
mpbird |
|- ( ( ph /\ x e. dom G ) -> ( x + T ) G ( G ` x ) ) |
| 279 |
4
|
a1i |
|- ( ph -> G = ( RR _D F ) ) |
| 280 |
279
|
funeqd |
|- ( ph -> ( Fun G <-> Fun ( RR _D F ) ) ) |
| 281 |
29 280
|
mpbird |
|- ( ph -> Fun G ) |
| 282 |
281
|
adantr |
|- ( ( ph /\ x e. dom G ) -> Fun G ) |
| 283 |
|
funbrfv2b |
|- ( Fun G -> ( ( x + T ) G ( G ` x ) <-> ( ( x + T ) e. dom G /\ ( G ` ( x + T ) ) = ( G ` x ) ) ) ) |
| 284 |
282 283
|
syl |
|- ( ( ph /\ x e. dom G ) -> ( ( x + T ) G ( G ` x ) <-> ( ( x + T ) e. dom G /\ ( G ` ( x + T ) ) = ( G ` x ) ) ) ) |
| 285 |
278 284
|
mpbid |
|- ( ( ph /\ x e. dom G ) -> ( ( x + T ) e. dom G /\ ( G ` ( x + T ) ) = ( G ` x ) ) ) |