Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem49.a |
|- ( ph -> A e. RR ) |
2 |
|
fourierdlem49.b |
|- ( ph -> B e. RR ) |
3 |
|
fourierdlem49.altb |
|- ( ph -> A < B ) |
4 |
|
fourierdlem49.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
5 |
|
fourierdlem49.t |
|- T = ( B - A ) |
6 |
|
fourierdlem49.m |
|- ( ph -> M e. NN ) |
7 |
|
fourierdlem49.q |
|- ( ph -> Q e. ( P ` M ) ) |
8 |
|
fourierdlem49.d |
|- ( ph -> D C_ RR ) |
9 |
|
fourierdlem49.f |
|- ( ph -> F : D --> RR ) |
10 |
|
fourierdlem49.dper |
|- ( ( ph /\ x e. D /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. D ) |
11 |
|
fourierdlem49.per |
|- ( ( ph /\ x e. D /\ k e. ZZ ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) |
12 |
|
fourierdlem49.cn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
13 |
|
fourierdlem49.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
14 |
|
fourierdlem49.x |
|- ( ph -> X e. RR ) |
15 |
|
fourierdlem49.z |
|- Z = ( x e. RR |-> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) |
16 |
|
fourierdlem49.e |
|- E = ( x e. RR |-> ( x + ( Z ` x ) ) ) |
17 |
|
ovex |
|- ( ( |_ ` ( ( B - x ) / T ) ) x. T ) e. _V |
18 |
15
|
fvmpt2 |
|- ( ( x e. RR /\ ( ( |_ ` ( ( B - x ) / T ) ) x. T ) e. _V ) -> ( Z ` x ) = ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) |
19 |
17 18
|
mpan2 |
|- ( x e. RR -> ( Z ` x ) = ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) |
20 |
19
|
oveq2d |
|- ( x e. RR -> ( x + ( Z ` x ) ) = ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
21 |
20
|
mpteq2ia |
|- ( x e. RR |-> ( x + ( Z ` x ) ) ) = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
22 |
16 21
|
eqtri |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
23 |
1 2 3 5 22
|
fourierdlem4 |
|- ( ph -> E : RR --> ( A (,] B ) ) |
24 |
23 14
|
ffvelrnd |
|- ( ph -> ( E ` X ) e. ( A (,] B ) ) |
25 |
|
simpr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) -> ( E ` X ) e. ran Q ) |
26 |
4
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
27 |
6 26
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
28 |
7 27
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
29 |
28
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
30 |
|
elmapi |
|- ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
31 |
29 30
|
syl |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
32 |
|
ffn |
|- ( Q : ( 0 ... M ) --> RR -> Q Fn ( 0 ... M ) ) |
33 |
31 32
|
syl |
|- ( ph -> Q Fn ( 0 ... M ) ) |
34 |
33
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) -> Q Fn ( 0 ... M ) ) |
35 |
|
fvelrnb |
|- ( Q Fn ( 0 ... M ) -> ( ( E ` X ) e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) ) ) |
36 |
34 35
|
syl |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) -> ( ( E ` X ) e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) ) ) |
37 |
25 36
|
mpbid |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) -> E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) ) |
38 |
|
1zzd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> 1 e. ZZ ) |
39 |
|
elfzelz |
|- ( j e. ( 0 ... M ) -> j e. ZZ ) |
40 |
39
|
ad2antlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> j e. ZZ ) |
41 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
42 |
41
|
a1i |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> 1 = ( 0 + 1 ) ) |
43 |
40
|
zred |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> j e. RR ) |
44 |
|
elfzle1 |
|- ( j e. ( 0 ... M ) -> 0 <_ j ) |
45 |
44
|
ad2antlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> 0 <_ j ) |
46 |
|
id |
|- ( ( Q ` j ) = ( E ` X ) -> ( Q ` j ) = ( E ` X ) ) |
47 |
46
|
eqcomd |
|- ( ( Q ` j ) = ( E ` X ) -> ( E ` X ) = ( Q ` j ) ) |
48 |
47
|
ad2antlr |
|- ( ( ( ph /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> ( E ` X ) = ( Q ` j ) ) |
49 |
|
fveq2 |
|- ( j = 0 -> ( Q ` j ) = ( Q ` 0 ) ) |
50 |
49
|
adantl |
|- ( ( ( ph /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> ( Q ` j ) = ( Q ` 0 ) ) |
51 |
28
|
simprld |
|- ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) ) |
52 |
51
|
simpld |
|- ( ph -> ( Q ` 0 ) = A ) |
53 |
52
|
ad2antrr |
|- ( ( ( ph /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> ( Q ` 0 ) = A ) |
54 |
48 50 53
|
3eqtrd |
|- ( ( ( ph /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> ( E ` X ) = A ) |
55 |
54
|
adantllr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> ( E ` X ) = A ) |
56 |
55
|
adantllr |
|- ( ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> ( E ` X ) = A ) |
57 |
1
|
adantr |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> A e. RR ) |
58 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
59 |
58
|
adantr |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> A e. RR* ) |
60 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
61 |
60
|
adantr |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> B e. RR* ) |
62 |
|
simpr |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> ( E ` X ) e. ( A (,] B ) ) |
63 |
|
iocgtlb |
|- ( ( A e. RR* /\ B e. RR* /\ ( E ` X ) e. ( A (,] B ) ) -> A < ( E ` X ) ) |
64 |
59 61 62 63
|
syl3anc |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> A < ( E ` X ) ) |
65 |
57 64
|
gtned |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> ( E ` X ) =/= A ) |
66 |
65
|
neneqd |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> -. ( E ` X ) = A ) |
67 |
66
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> -. ( E ` X ) = A ) |
68 |
56 67
|
pm2.65da |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> -. j = 0 ) |
69 |
68
|
neqned |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> j =/= 0 ) |
70 |
43 45 69
|
ne0gt0d |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> 0 < j ) |
71 |
|
0zd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> 0 e. ZZ ) |
72 |
|
zltp1le |
|- ( ( 0 e. ZZ /\ j e. ZZ ) -> ( 0 < j <-> ( 0 + 1 ) <_ j ) ) |
73 |
71 40 72
|
syl2anc |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( 0 < j <-> ( 0 + 1 ) <_ j ) ) |
74 |
70 73
|
mpbid |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( 0 + 1 ) <_ j ) |
75 |
42 74
|
eqbrtrd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> 1 <_ j ) |
76 |
|
eluz2 |
|- ( j e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ j e. ZZ /\ 1 <_ j ) ) |
77 |
38 40 75 76
|
syl3anbrc |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> j e. ( ZZ>= ` 1 ) ) |
78 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
79 |
77 78
|
eleqtrrdi |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> j e. NN ) |
80 |
|
nnm1nn0 |
|- ( j e. NN -> ( j - 1 ) e. NN0 ) |
81 |
79 80
|
syl |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. NN0 ) |
82 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
83 |
82
|
a1i |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> NN0 = ( ZZ>= ` 0 ) ) |
84 |
81 83
|
eleqtrd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. ( ZZ>= ` 0 ) ) |
85 |
6
|
nnzd |
|- ( ph -> M e. ZZ ) |
86 |
85
|
ad3antrrr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> M e. ZZ ) |
87 |
|
peano2zm |
|- ( j e. ZZ -> ( j - 1 ) e. ZZ ) |
88 |
39 87
|
syl |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) e. ZZ ) |
89 |
88
|
zred |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) e. RR ) |
90 |
39
|
zred |
|- ( j e. ( 0 ... M ) -> j e. RR ) |
91 |
|
elfzel2 |
|- ( j e. ( 0 ... M ) -> M e. ZZ ) |
92 |
91
|
zred |
|- ( j e. ( 0 ... M ) -> M e. RR ) |
93 |
90
|
ltm1d |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) < j ) |
94 |
|
elfzle2 |
|- ( j e. ( 0 ... M ) -> j <_ M ) |
95 |
89 90 92 93 94
|
ltletrd |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) < M ) |
96 |
95
|
ad2antlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) < M ) |
97 |
|
elfzo2 |
|- ( ( j - 1 ) e. ( 0 ..^ M ) <-> ( ( j - 1 ) e. ( ZZ>= ` 0 ) /\ M e. ZZ /\ ( j - 1 ) < M ) ) |
98 |
84 86 96 97
|
syl3anbrc |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. ( 0 ..^ M ) ) |
99 |
31
|
ad3antrrr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> Q : ( 0 ... M ) --> RR ) |
100 |
40 87
|
syl |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. ZZ ) |
101 |
81
|
nn0ge0d |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> 0 <_ ( j - 1 ) ) |
102 |
89 92 95
|
ltled |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) <_ M ) |
103 |
102
|
ad2antlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) <_ M ) |
104 |
71 86 100 101 103
|
elfzd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. ( 0 ... M ) ) |
105 |
99 104
|
ffvelrnd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) e. RR ) |
106 |
105
|
rexrd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) e. RR* ) |
107 |
31
|
ffvelrnda |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR ) |
108 |
107
|
rexrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR* ) |
109 |
108
|
adantlr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR* ) |
110 |
109
|
adantr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` j ) e. RR* ) |
111 |
|
iocssre |
|- ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) |
112 |
58 2 111
|
syl2anc |
|- ( ph -> ( A (,] B ) C_ RR ) |
113 |
112
|
sselda |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> ( E ` X ) e. RR ) |
114 |
113
|
rexrd |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> ( E ` X ) e. RR* ) |
115 |
114
|
ad2antrr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) e. RR* ) |
116 |
|
simplll |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ph ) |
117 |
|
ovex |
|- ( j - 1 ) e. _V |
118 |
|
eleq1 |
|- ( i = ( j - 1 ) -> ( i e. ( 0 ..^ M ) <-> ( j - 1 ) e. ( 0 ..^ M ) ) ) |
119 |
118
|
anbi2d |
|- ( i = ( j - 1 ) -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ ( j - 1 ) e. ( 0 ..^ M ) ) ) ) |
120 |
|
fveq2 |
|- ( i = ( j - 1 ) -> ( Q ` i ) = ( Q ` ( j - 1 ) ) ) |
121 |
|
oveq1 |
|- ( i = ( j - 1 ) -> ( i + 1 ) = ( ( j - 1 ) + 1 ) ) |
122 |
121
|
fveq2d |
|- ( i = ( j - 1 ) -> ( Q ` ( i + 1 ) ) = ( Q ` ( ( j - 1 ) + 1 ) ) ) |
123 |
120 122
|
breq12d |
|- ( i = ( j - 1 ) -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` ( j - 1 ) ) < ( Q ` ( ( j - 1 ) + 1 ) ) ) ) |
124 |
119 123
|
imbi12d |
|- ( i = ( j - 1 ) -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ ( j - 1 ) e. ( 0 ..^ M ) ) -> ( Q ` ( j - 1 ) ) < ( Q ` ( ( j - 1 ) + 1 ) ) ) ) ) |
125 |
28
|
simprrd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
126 |
125
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
127 |
117 124 126
|
vtocl |
|- ( ( ph /\ ( j - 1 ) e. ( 0 ..^ M ) ) -> ( Q ` ( j - 1 ) ) < ( Q ` ( ( j - 1 ) + 1 ) ) ) |
128 |
116 98 127
|
syl2anc |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) < ( Q ` ( ( j - 1 ) + 1 ) ) ) |
129 |
39
|
zcnd |
|- ( j e. ( 0 ... M ) -> j e. CC ) |
130 |
|
1cnd |
|- ( j e. ( 0 ... M ) -> 1 e. CC ) |
131 |
129 130
|
npcand |
|- ( j e. ( 0 ... M ) -> ( ( j - 1 ) + 1 ) = j ) |
132 |
131
|
eqcomd |
|- ( j e. ( 0 ... M ) -> j = ( ( j - 1 ) + 1 ) ) |
133 |
132
|
fveq2d |
|- ( j e. ( 0 ... M ) -> ( Q ` j ) = ( Q ` ( ( j - 1 ) + 1 ) ) ) |
134 |
133
|
eqcomd |
|- ( j e. ( 0 ... M ) -> ( Q ` ( ( j - 1 ) + 1 ) ) = ( Q ` j ) ) |
135 |
134
|
ad2antlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( ( j - 1 ) + 1 ) ) = ( Q ` j ) ) |
136 |
128 135
|
breqtrd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) < ( Q ` j ) ) |
137 |
|
simpr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` j ) = ( E ` X ) ) |
138 |
136 137
|
breqtrd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) < ( E ` X ) ) |
139 |
112 24
|
sseldd |
|- ( ph -> ( E ` X ) e. RR ) |
140 |
139
|
leidd |
|- ( ph -> ( E ` X ) <_ ( E ` X ) ) |
141 |
140
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) <_ ( E ` X ) ) |
142 |
47
|
adantl |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) = ( Q ` j ) ) |
143 |
141 142
|
breqtrd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) <_ ( Q ` j ) ) |
144 |
143
|
adantllr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) <_ ( Q ` j ) ) |
145 |
106 110 115 138 144
|
eliocd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) e. ( ( Q ` ( j - 1 ) ) (,] ( Q ` j ) ) ) |
146 |
133
|
oveq2d |
|- ( j e. ( 0 ... M ) -> ( ( Q ` ( j - 1 ) ) (,] ( Q ` j ) ) = ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) |
147 |
146
|
ad2antlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( ( Q ` ( j - 1 ) ) (,] ( Q ` j ) ) = ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) |
148 |
145 147
|
eleqtrd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) e. ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) |
149 |
120 122
|
oveq12d |
|- ( i = ( j - 1 ) -> ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) = ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) |
150 |
149
|
eleq2d |
|- ( i = ( j - 1 ) -> ( ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) <-> ( E ` X ) e. ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) ) |
151 |
150
|
rspcev |
|- ( ( ( j - 1 ) e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
152 |
98 148 151
|
syl2anc |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
153 |
152
|
ex |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) -> ( ( Q ` j ) = ( E ` X ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
154 |
153
|
adantlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) /\ j e. ( 0 ... M ) ) -> ( ( Q ` j ) = ( E ` X ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
155 |
154
|
rexlimdva |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) -> ( E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
156 |
37 155
|
mpd |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
157 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> M e. NN ) |
158 |
31
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> Q : ( 0 ... M ) --> RR ) |
159 |
|
iocssicc |
|- ( A (,] B ) C_ ( A [,] B ) |
160 |
52
|
eqcomd |
|- ( ph -> A = ( Q ` 0 ) ) |
161 |
51
|
simprd |
|- ( ph -> ( Q ` M ) = B ) |
162 |
161
|
eqcomd |
|- ( ph -> B = ( Q ` M ) ) |
163 |
160 162
|
oveq12d |
|- ( ph -> ( A [,] B ) = ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
164 |
159 163
|
sseqtrid |
|- ( ph -> ( A (,] B ) C_ ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
165 |
164
|
sselda |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> ( E ` X ) e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
166 |
165
|
adantr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> ( E ` X ) e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
167 |
|
simpr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> -. ( E ` X ) e. ran Q ) |
168 |
|
fveq2 |
|- ( k = j -> ( Q ` k ) = ( Q ` j ) ) |
169 |
168
|
breq1d |
|- ( k = j -> ( ( Q ` k ) < ( E ` X ) <-> ( Q ` j ) < ( E ` X ) ) ) |
170 |
169
|
cbvrabv |
|- { k e. ( 0 ..^ M ) | ( Q ` k ) < ( E ` X ) } = { j e. ( 0 ..^ M ) | ( Q ` j ) < ( E ` X ) } |
171 |
170
|
supeq1i |
|- sup ( { k e. ( 0 ..^ M ) | ( Q ` k ) < ( E ` X ) } , RR , < ) = sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) < ( E ` X ) } , RR , < ) |
172 |
157 158 166 167 171
|
fourierdlem25 |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
173 |
|
ioossioc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) |
174 |
173
|
sseli |
|- ( ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
175 |
174
|
a1i |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) /\ i e. ( 0 ..^ M ) ) -> ( ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
176 |
175
|
reximdva |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> ( E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
177 |
172 176
|
mpd |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
178 |
156 177
|
pm2.61dan |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
179 |
24 178
|
mpdan |
|- ( ph -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
180 |
|
frel |
|- ( F : D --> RR -> Rel F ) |
181 |
9 180
|
syl |
|- ( ph -> Rel F ) |
182 |
|
resindm |
|- ( Rel F -> ( F |` ( ( -oo (,) ( E ` X ) ) i^i dom F ) ) = ( F |` ( -oo (,) ( E ` X ) ) ) ) |
183 |
182
|
eqcomd |
|- ( Rel F -> ( F |` ( -oo (,) ( E ` X ) ) ) = ( F |` ( ( -oo (,) ( E ` X ) ) i^i dom F ) ) ) |
184 |
181 183
|
syl |
|- ( ph -> ( F |` ( -oo (,) ( E ` X ) ) ) = ( F |` ( ( -oo (,) ( E ` X ) ) i^i dom F ) ) ) |
185 |
|
fdm |
|- ( F : D --> RR -> dom F = D ) |
186 |
9 185
|
syl |
|- ( ph -> dom F = D ) |
187 |
186
|
ineq2d |
|- ( ph -> ( ( -oo (,) ( E ` X ) ) i^i dom F ) = ( ( -oo (,) ( E ` X ) ) i^i D ) ) |
188 |
187
|
reseq2d |
|- ( ph -> ( F |` ( ( -oo (,) ( E ` X ) ) i^i dom F ) ) = ( F |` ( ( -oo (,) ( E ` X ) ) i^i D ) ) ) |
189 |
184 188
|
eqtrd |
|- ( ph -> ( F |` ( -oo (,) ( E ` X ) ) ) = ( F |` ( ( -oo (,) ( E ` X ) ) i^i D ) ) ) |
190 |
189
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( F |` ( -oo (,) ( E ` X ) ) ) = ( F |` ( ( -oo (,) ( E ` X ) ) i^i D ) ) ) |
191 |
190
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( -oo (,) ( E ` X ) ) ) limCC ( E ` X ) ) = ( ( F |` ( ( -oo (,) ( E ` X ) ) i^i D ) ) limCC ( E ` X ) ) ) |
192 |
|
ax-resscn |
|- RR C_ CC |
193 |
192
|
a1i |
|- ( ph -> RR C_ CC ) |
194 |
9 193
|
fssd |
|- ( ph -> F : D --> CC ) |
195 |
194
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> F : D --> CC ) |
196 |
|
inss2 |
|- ( ( -oo (,) ( E ` X ) ) i^i D ) C_ D |
197 |
196
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( -oo (,) ( E ` X ) ) i^i D ) C_ D ) |
198 |
195 197
|
fssresd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( F |` ( ( -oo (,) ( E ` X ) ) i^i D ) ) : ( ( -oo (,) ( E ` X ) ) i^i D ) --> CC ) |
199 |
|
mnfxr |
|- -oo e. RR* |
200 |
199
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -oo e. RR* ) |
201 |
31
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
202 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
203 |
202
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
204 |
201 203
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
205 |
204
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
206 |
204
|
mnfltd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -oo < ( Q ` i ) ) |
207 |
200 205 206
|
xrltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -oo <_ ( Q ` i ) ) |
208 |
|
iooss1 |
|- ( ( -oo e. RR* /\ -oo <_ ( Q ` i ) ) -> ( ( Q ` i ) (,) ( E ` X ) ) C_ ( -oo (,) ( E ` X ) ) ) |
209 |
199 207 208
|
sylancr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( E ` X ) ) C_ ( -oo (,) ( E ` X ) ) ) |
210 |
209
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( E ` X ) ) C_ ( -oo (,) ( E ` X ) ) ) |
211 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
212 |
211
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
213 |
201 212
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
214 |
213
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
215 |
214
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
216 |
204
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
217 |
216
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
218 |
|
simp3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
219 |
|
iocleub |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) <_ ( Q ` ( i + 1 ) ) ) |
220 |
217 215 218 219
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) <_ ( Q ` ( i + 1 ) ) ) |
221 |
|
iooss2 |
|- ( ( ( Q ` ( i + 1 ) ) e. RR* /\ ( E ` X ) <_ ( Q ` ( i + 1 ) ) ) -> ( ( Q ` i ) (,) ( E ` X ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
222 |
215 220 221
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( E ` X ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
223 |
|
cncff |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
224 |
|
fdm |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC -> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
225 |
12 223 224
|
3syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
226 |
|
ssdmres |
|- ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F <-> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
227 |
225 226
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) |
228 |
186
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom F = D ) |
229 |
227 228
|
sseqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ D ) |
230 |
229
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ D ) |
231 |
222 230
|
sstrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( E ` X ) ) C_ D ) |
232 |
210 231
|
ssind |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( E ` X ) ) C_ ( ( -oo (,) ( E ` X ) ) i^i D ) ) |
233 |
8 193
|
sstrd |
|- ( ph -> D C_ CC ) |
234 |
233
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> D C_ CC ) |
235 |
196 234
|
sstrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( -oo (,) ( E ` X ) ) i^i D ) C_ CC ) |
236 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
237 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) |
238 |
139
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. RR ) |
239 |
238
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. RR* ) |
240 |
|
iocgtlb |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( E ` X ) ) |
241 |
217 215 218 240
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( E ` X ) ) |
242 |
238
|
leidd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) <_ ( E ` X ) ) |
243 |
217 239 239 241 242
|
eliocd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. ( ( Q ` i ) (,] ( E ` X ) ) ) |
244 |
|
ioounsn |
|- ( ( ( Q ` i ) e. RR* /\ ( E ` X ) e. RR* /\ ( Q ` i ) < ( E ` X ) ) -> ( ( ( Q ` i ) (,) ( E ` X ) ) u. { ( E ` X ) } ) = ( ( Q ` i ) (,] ( E ` X ) ) ) |
245 |
217 239 241 244
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( Q ` i ) (,) ( E ` X ) ) u. { ( E ` X ) } ) = ( ( Q ` i ) (,] ( E ` X ) ) ) |
246 |
245
|
fveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) ` ( ( ( Q ` i ) (,) ( E ` X ) ) u. { ( E ` X ) } ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) ` ( ( Q ` i ) (,] ( E ` X ) ) ) ) |
247 |
236
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
248 |
|
ovex |
|- ( -oo (,) ( E ` X ) ) e. _V |
249 |
248
|
inex1 |
|- ( ( -oo (,) ( E ` X ) ) i^i D ) e. _V |
250 |
|
snex |
|- { ( E ` X ) } e. _V |
251 |
249 250
|
unex |
|- ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) e. _V |
252 |
|
resttop |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) e. Top ) |
253 |
247 251 252
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) e. Top |
254 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
255 |
254
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( topGen ` ran (,) ) e. Top ) |
256 |
251
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) e. _V ) |
257 |
|
iooretop |
|- ( ( Q ` i ) (,) +oo ) e. ( topGen ` ran (,) ) |
258 |
257
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) +oo ) e. ( topGen ` ran (,) ) ) |
259 |
|
elrestr |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) e. _V /\ ( ( Q ` i ) (,) +oo ) e. ( topGen ` ran (,) ) ) -> ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) |
260 |
255 256 258 259
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) |
261 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x = ( E ` X ) ) -> x = ( E ` X ) ) |
262 |
|
pnfxr |
|- +oo e. RR* |
263 |
262
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> +oo e. RR* ) |
264 |
238
|
ltpnfd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) < +oo ) |
265 |
217 263 238 241 264
|
eliood |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. ( ( Q ` i ) (,) +oo ) ) |
266 |
|
snidg |
|- ( ( E ` X ) e. RR -> ( E ` X ) e. { ( E ` X ) } ) |
267 |
|
elun2 |
|- ( ( E ` X ) e. { ( E ` X ) } -> ( E ` X ) e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) |
268 |
266 267
|
syl |
|- ( ( E ` X ) e. RR -> ( E ` X ) e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) |
269 |
139 268
|
syl |
|- ( ph -> ( E ` X ) e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) |
270 |
269
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) |
271 |
265 270
|
elind |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) |
272 |
271
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x = ( E ` X ) ) -> ( E ` X ) e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) |
273 |
261 272
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x = ( E ` X ) ) -> x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) |
274 |
273
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ x = ( E ` X ) ) -> x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) |
275 |
217
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> ( Q ` i ) e. RR* ) |
276 |
262
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> +oo e. RR* ) |
277 |
205
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> ( Q ` i ) e. RR* ) |
278 |
139
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E ` X ) e. RR ) |
279 |
278
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> ( E ` X ) e. RR ) |
280 |
|
iocssre |
|- ( ( ( Q ` i ) e. RR* /\ ( E ` X ) e. RR ) -> ( ( Q ` i ) (,] ( E ` X ) ) C_ RR ) |
281 |
277 279 280
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> ( ( Q ` i ) (,] ( E ` X ) ) C_ RR ) |
282 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> x e. ( ( Q ` i ) (,] ( E ` X ) ) ) |
283 |
281 282
|
sseldd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> x e. RR ) |
284 |
283
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> x e. RR ) |
285 |
279
|
rexrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> ( E ` X ) e. RR* ) |
286 |
|
iocgtlb |
|- ( ( ( Q ` i ) e. RR* /\ ( E ` X ) e. RR* /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> ( Q ` i ) < x ) |
287 |
277 285 282 286
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> ( Q ` i ) < x ) |
288 |
287
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> ( Q ` i ) < x ) |
289 |
284
|
ltpnfd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> x < +oo ) |
290 |
275 276 284 288 289
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> x e. ( ( Q ` i ) (,) +oo ) ) |
291 |
290
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x e. ( ( Q ` i ) (,) +oo ) ) |
292 |
199
|
a1i |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> -oo e. RR* ) |
293 |
285
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> ( E ` X ) e. RR* ) |
294 |
283
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x e. RR ) |
295 |
294
|
mnfltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> -oo < x ) |
296 |
139
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> ( E ` X ) e. RR ) |
297 |
|
iocleub |
|- ( ( ( Q ` i ) e. RR* /\ ( E ` X ) e. RR* /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> x <_ ( E ` X ) ) |
298 |
277 285 282 297
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> x <_ ( E ` X ) ) |
299 |
298
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x <_ ( E ` X ) ) |
300 |
|
neqne |
|- ( -. x = ( E ` X ) -> x =/= ( E ` X ) ) |
301 |
300
|
necomd |
|- ( -. x = ( E ` X ) -> ( E ` X ) =/= x ) |
302 |
301
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> ( E ` X ) =/= x ) |
303 |
294 296 299 302
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x < ( E ` X ) ) |
304 |
292 293 294 295 303
|
eliood |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x e. ( -oo (,) ( E ` X ) ) ) |
305 |
304
|
3adantll3 |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x e. ( -oo (,) ( E ` X ) ) ) |
306 |
230
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ D ) |
307 |
275
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> ( Q ` i ) e. RR* ) |
308 |
215
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
309 |
284
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x e. RR ) |
310 |
288
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> ( Q ` i ) < x ) |
311 |
238
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> ( E ` X ) e. RR ) |
312 |
214
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
313 |
303
|
3adantll3 |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x < ( E ` X ) ) |
314 |
220
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> ( E ` X ) <_ ( Q ` ( i + 1 ) ) ) |
315 |
309 311 312 313 314
|
ltletrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x < ( Q ` ( i + 1 ) ) ) |
316 |
307 308 309 310 315
|
eliood |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
317 |
306 316
|
sseldd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x e. D ) |
318 |
305 317
|
elind |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x e. ( ( -oo (,) ( E ` X ) ) i^i D ) ) |
319 |
|
elun1 |
|- ( x e. ( ( -oo (,) ( E ` X ) ) i^i D ) -> x e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) |
320 |
318 319
|
syl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) |
321 |
291 320
|
elind |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) /\ -. x = ( E ` X ) ) -> x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) |
322 |
274 321
|
pm2.61dan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,] ( E ` X ) ) ) -> x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) |
323 |
217
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) -> ( Q ` i ) e. RR* ) |
324 |
239
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) -> ( E ` X ) e. RR* ) |
325 |
|
elinel1 |
|- ( x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) -> x e. ( ( Q ` i ) (,) +oo ) ) |
326 |
|
elioore |
|- ( x e. ( ( Q ` i ) (,) +oo ) -> x e. RR ) |
327 |
326
|
rexrd |
|- ( x e. ( ( Q ` i ) (,) +oo ) -> x e. RR* ) |
328 |
325 327
|
syl |
|- ( x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) -> x e. RR* ) |
329 |
328
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) -> x e. RR* ) |
330 |
205
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) -> ( Q ` i ) e. RR* ) |
331 |
262
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) -> +oo e. RR* ) |
332 |
325
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) -> x e. ( ( Q ` i ) (,) +oo ) ) |
333 |
|
ioogtlb |
|- ( ( ( Q ` i ) e. RR* /\ +oo e. RR* /\ x e. ( ( Q ` i ) (,) +oo ) ) -> ( Q ` i ) < x ) |
334 |
330 331 332 333
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) -> ( Q ` i ) < x ) |
335 |
334
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) -> ( Q ` i ) < x ) |
336 |
|
elinel2 |
|- ( x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) -> x e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) |
337 |
|
elsni |
|- ( x e. { ( E ` X ) } -> x = ( E ` X ) ) |
338 |
337
|
adantl |
|- ( ( ph /\ x e. { ( E ` X ) } ) -> x = ( E ` X ) ) |
339 |
140
|
adantr |
|- ( ( ph /\ x e. { ( E ` X ) } ) -> ( E ` X ) <_ ( E ` X ) ) |
340 |
338 339
|
eqbrtrd |
|- ( ( ph /\ x e. { ( E ` X ) } ) -> x <_ ( E ` X ) ) |
341 |
340
|
adantlr |
|- ( ( ( ph /\ x e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) /\ x e. { ( E ` X ) } ) -> x <_ ( E ` X ) ) |
342 |
|
simpll |
|- ( ( ( ph /\ x e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) /\ -. x e. { ( E ` X ) } ) -> ph ) |
343 |
|
elunnel2 |
|- ( ( x e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) /\ -. x e. { ( E ` X ) } ) -> x e. ( ( -oo (,) ( E ` X ) ) i^i D ) ) |
344 |
343
|
adantll |
|- ( ( ( ph /\ x e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) /\ -. x e. { ( E ` X ) } ) -> x e. ( ( -oo (,) ( E ` X ) ) i^i D ) ) |
345 |
|
elinel1 |
|- ( x e. ( ( -oo (,) ( E ` X ) ) i^i D ) -> x e. ( -oo (,) ( E ` X ) ) ) |
346 |
|
elioore |
|- ( x e. ( -oo (,) ( E ` X ) ) -> x e. RR ) |
347 |
346
|
adantl |
|- ( ( ph /\ x e. ( -oo (,) ( E ` X ) ) ) -> x e. RR ) |
348 |
139
|
adantr |
|- ( ( ph /\ x e. ( -oo (,) ( E ` X ) ) ) -> ( E ` X ) e. RR ) |
349 |
199
|
a1i |
|- ( ( ph /\ x e. ( -oo (,) ( E ` X ) ) ) -> -oo e. RR* ) |
350 |
348
|
rexrd |
|- ( ( ph /\ x e. ( -oo (,) ( E ` X ) ) ) -> ( E ` X ) e. RR* ) |
351 |
|
simpr |
|- ( ( ph /\ x e. ( -oo (,) ( E ` X ) ) ) -> x e. ( -oo (,) ( E ` X ) ) ) |
352 |
|
iooltub |
|- ( ( -oo e. RR* /\ ( E ` X ) e. RR* /\ x e. ( -oo (,) ( E ` X ) ) ) -> x < ( E ` X ) ) |
353 |
349 350 351 352
|
syl3anc |
|- ( ( ph /\ x e. ( -oo (,) ( E ` X ) ) ) -> x < ( E ` X ) ) |
354 |
347 348 353
|
ltled |
|- ( ( ph /\ x e. ( -oo (,) ( E ` X ) ) ) -> x <_ ( E ` X ) ) |
355 |
345 354
|
sylan2 |
|- ( ( ph /\ x e. ( ( -oo (,) ( E ` X ) ) i^i D ) ) -> x <_ ( E ` X ) ) |
356 |
342 344 355
|
syl2anc |
|- ( ( ( ph /\ x e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) /\ -. x e. { ( E ` X ) } ) -> x <_ ( E ` X ) ) |
357 |
341 356
|
pm2.61dan |
|- ( ( ph /\ x e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) -> x <_ ( E ` X ) ) |
358 |
357
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) -> x <_ ( E ` X ) ) |
359 |
336 358
|
sylan2 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) -> x <_ ( E ` X ) ) |
360 |
359
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) -> x <_ ( E ` X ) ) |
361 |
323 324 329 335 360
|
eliocd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) -> x e. ( ( Q ` i ) (,] ( E ` X ) ) ) |
362 |
322 361
|
impbida |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( x e. ( ( Q ` i ) (,] ( E ` X ) ) <-> x e. ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) ) |
363 |
362
|
eqrdv |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,] ( E ` X ) ) = ( ( ( Q ` i ) (,) +oo ) i^i ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) |
364 |
|
ioossre |
|- ( -oo (,) ( E ` X ) ) C_ RR |
365 |
|
ssinss1 |
|- ( ( -oo (,) ( E ` X ) ) C_ RR -> ( ( -oo (,) ( E ` X ) ) i^i D ) C_ RR ) |
366 |
364 365
|
mp1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( -oo (,) ( E ` X ) ) i^i D ) C_ RR ) |
367 |
238
|
snssd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> { ( E ` X ) } C_ RR ) |
368 |
366 367
|
unssd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) C_ RR ) |
369 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
370 |
236 369
|
rerest |
|- ( ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) C_ RR -> ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) = ( ( topGen ` ran (,) ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) |
371 |
368 370
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) = ( ( topGen ` ran (,) ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) |
372 |
260 363 371
|
3eltr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,] ( E ` X ) ) e. ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) |
373 |
|
isopn3i |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) e. Top /\ ( ( Q ` i ) (,] ( E ` X ) ) e. ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) ` ( ( Q ` i ) (,] ( E ` X ) ) ) = ( ( Q ` i ) (,] ( E ` X ) ) ) |
374 |
253 372 373
|
sylancr |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) ` ( ( Q ` i ) (,] ( E ` X ) ) ) = ( ( Q ` i ) (,] ( E ` X ) ) ) |
375 |
246 374
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,] ( E ` X ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) ` ( ( ( Q ` i ) (,) ( E ` X ) ) u. { ( E ` X ) } ) ) ) |
376 |
243 375
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) ( E ` X ) ) i^i D ) u. { ( E ` X ) } ) ) ) ` ( ( ( Q ` i ) (,) ( E ` X ) ) u. { ( E ` X ) } ) ) ) |
377 |
198 232 235 236 237 376
|
limcres |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( F |` ( ( -oo (,) ( E ` X ) ) i^i D ) ) |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) = ( ( F |` ( ( -oo (,) ( E ` X ) ) i^i D ) ) limCC ( E ` X ) ) ) |
378 |
232
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( -oo (,) ( E ` X ) ) i^i D ) ) |` ( ( Q ` i ) (,) ( E ` X ) ) ) = ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) ) |
379 |
378
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( F |` ( ( -oo (,) ( E ` X ) ) i^i D ) ) |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) = ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) |
380 |
191 377 379
|
3eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( -oo (,) ( E ` X ) ) ) limCC ( E ` X ) ) = ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) |
381 |
186
|
feq2d |
|- ( ph -> ( F : dom F --> CC <-> F : D --> CC ) ) |
382 |
194 381
|
mpbird |
|- ( ph -> F : dom F --> CC ) |
383 |
382
|
adantr |
|- ( ( ph /\ y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) -> F : dom F --> CC ) |
384 |
383
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) -> F : dom F --> CC ) |
385 |
|
ioosscn |
|- ( ( Q ` i ) (,) ( E ` X ) ) C_ CC |
386 |
385
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) -> ( ( Q ` i ) (,) ( E ` X ) ) C_ CC ) |
387 |
186
|
eqcomd |
|- ( ph -> D = dom F ) |
388 |
387
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> D = dom F ) |
389 |
231 388
|
sseqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( E ` X ) ) C_ dom F ) |
390 |
389
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) -> ( ( Q ` i ) (,) ( E ` X ) ) C_ dom F ) |
391 |
15
|
a1i |
|- ( ph -> Z = ( x e. RR |-> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
392 |
|
oveq2 |
|- ( x = X -> ( B - x ) = ( B - X ) ) |
393 |
392
|
oveq1d |
|- ( x = X -> ( ( B - x ) / T ) = ( ( B - X ) / T ) ) |
394 |
393
|
fveq2d |
|- ( x = X -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - X ) / T ) ) ) |
395 |
394
|
oveq1d |
|- ( x = X -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
396 |
395
|
adantl |
|- ( ( ph /\ x = X ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
397 |
2 14
|
resubcld |
|- ( ph -> ( B - X ) e. RR ) |
398 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
399 |
5 398
|
eqeltrid |
|- ( ph -> T e. RR ) |
400 |
1 2
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
401 |
3 400
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
402 |
5
|
eqcomi |
|- ( B - A ) = T |
403 |
402
|
a1i |
|- ( ph -> ( B - A ) = T ) |
404 |
401 403
|
breqtrd |
|- ( ph -> 0 < T ) |
405 |
404
|
gt0ne0d |
|- ( ph -> T =/= 0 ) |
406 |
397 399 405
|
redivcld |
|- ( ph -> ( ( B - X ) / T ) e. RR ) |
407 |
406
|
flcld |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
408 |
407
|
zred |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. RR ) |
409 |
408 399
|
remulcld |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. RR ) |
410 |
391 396 14 409
|
fvmptd |
|- ( ph -> ( Z ` X ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
411 |
410 409
|
eqeltrd |
|- ( ph -> ( Z ` X ) e. RR ) |
412 |
411
|
recnd |
|- ( ph -> ( Z ` X ) e. CC ) |
413 |
412
|
adantr |
|- ( ( ph /\ y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) -> ( Z ` X ) e. CC ) |
414 |
413
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) -> ( Z ` X ) e. CC ) |
415 |
414
|
negcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) -> -u ( Z ` X ) e. CC ) |
416 |
|
eqid |
|- { z e. CC | E. x e. ( ( Q ` i ) (,) ( E ` X ) ) z = ( x + -u ( Z ` X ) ) } = { z e. CC | E. x e. ( ( Q ` i ) (,) ( E ` X ) ) z = ( x + -u ( Z ` X ) ) } |
417 |
|
ioosscn |
|- ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ CC |
418 |
417
|
sseli |
|- ( y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) -> y e. CC ) |
419 |
418
|
adantl |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y e. CC ) |
420 |
412
|
adantr |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Z ` X ) e. CC ) |
421 |
419 420
|
pncand |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( y + ( Z ` X ) ) - ( Z ` X ) ) = y ) |
422 |
421
|
eqcomd |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y = ( ( y + ( Z ` X ) ) - ( Z ` X ) ) ) |
423 |
422
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y = ( ( y + ( Z ` X ) ) - ( Z ` X ) ) ) |
424 |
410
|
oveq2d |
|- ( ph -> ( ( y + ( Z ` X ) ) - ( Z ` X ) ) = ( ( y + ( Z ` X ) ) - ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
425 |
424
|
adantr |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( y + ( Z ` X ) ) - ( Z ` X ) ) = ( ( y + ( Z ` X ) ) - ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
426 |
419 420
|
addcld |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) e. CC ) |
427 |
409
|
recnd |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. CC ) |
428 |
427
|
adantr |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. CC ) |
429 |
426 428
|
negsubd |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( y + ( Z ` X ) ) + -u ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) = ( ( y + ( Z ` X ) ) - ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
430 |
407
|
zcnd |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. CC ) |
431 |
399
|
recnd |
|- ( ph -> T e. CC ) |
432 |
430 431
|
mulneg1d |
|- ( ph -> ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) = -u ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
433 |
432
|
eqcomd |
|- ( ph -> -u ( ( |_ ` ( ( B - X ) / T ) ) x. T ) = ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
434 |
433
|
oveq2d |
|- ( ph -> ( ( y + ( Z ` X ) ) + -u ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) = ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
435 |
434
|
adantr |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( y + ( Z ` X ) ) + -u ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) = ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
436 |
425 429 435
|
3eqtr2d |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( y + ( Z ` X ) ) - ( Z ` X ) ) = ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
437 |
436
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( y + ( Z ` X ) ) - ( Z ` X ) ) = ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
438 |
407
|
znegcld |
|- ( ph -> -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
439 |
438
|
adantr |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
440 |
439
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
441 |
|
simpl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ph ) |
442 |
231
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( Q ` i ) (,) ( E ` X ) ) C_ D ) |
443 |
205
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Q ` i ) e. RR* ) |
444 |
139
|
rexrd |
|- ( ph -> ( E ` X ) e. RR* ) |
445 |
444
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( E ` X ) e. RR* ) |
446 |
|
elioore |
|- ( y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) -> y e. RR ) |
447 |
446
|
adantl |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y e. RR ) |
448 |
411
|
adantr |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Z ` X ) e. RR ) |
449 |
447 448
|
readdcld |
|- ( ( ph /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) e. RR ) |
450 |
449
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) e. RR ) |
451 |
411
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Z ` X ) e. RR ) |
452 |
204 451
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) - ( Z ` X ) ) e. RR ) |
453 |
452
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) - ( Z ` X ) ) e. RR* ) |
454 |
453
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( Q ` i ) - ( Z ` X ) ) e. RR* ) |
455 |
14
|
rexrd |
|- ( ph -> X e. RR* ) |
456 |
455
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> X e. RR* ) |
457 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) |
458 |
|
ioogtlb |
|- ( ( ( ( Q ` i ) - ( Z ` X ) ) e. RR* /\ X e. RR* /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( Q ` i ) - ( Z ` X ) ) < y ) |
459 |
454 456 457 458
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( Q ` i ) - ( Z ` X ) ) < y ) |
460 |
204
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Q ` i ) e. RR ) |
461 |
451
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Z ` X ) e. RR ) |
462 |
446
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y e. RR ) |
463 |
460 461 462
|
ltsubaddd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) < y <-> ( Q ` i ) < ( y + ( Z ` X ) ) ) ) |
464 |
459 463
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( Q ` i ) < ( y + ( Z ` X ) ) ) |
465 |
14
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> X e. RR ) |
466 |
|
iooltub |
|- ( ( ( ( Q ` i ) - ( Z ` X ) ) e. RR* /\ X e. RR* /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y < X ) |
467 |
454 456 457 466
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y < X ) |
468 |
462 465 461 467
|
ltadd1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) < ( X + ( Z ` X ) ) ) |
469 |
16
|
a1i |
|- ( ph -> E = ( x e. RR |-> ( x + ( Z ` x ) ) ) ) |
470 |
|
id |
|- ( x = X -> x = X ) |
471 |
|
fveq2 |
|- ( x = X -> ( Z ` x ) = ( Z ` X ) ) |
472 |
470 471
|
oveq12d |
|- ( x = X -> ( x + ( Z ` x ) ) = ( X + ( Z ` X ) ) ) |
473 |
472
|
adantl |
|- ( ( ph /\ x = X ) -> ( x + ( Z ` x ) ) = ( X + ( Z ` X ) ) ) |
474 |
14 411
|
readdcld |
|- ( ph -> ( X + ( Z ` X ) ) e. RR ) |
475 |
469 473 14 474
|
fvmptd |
|- ( ph -> ( E ` X ) = ( X + ( Z ` X ) ) ) |
476 |
475
|
eqcomd |
|- ( ph -> ( X + ( Z ` X ) ) = ( E ` X ) ) |
477 |
476
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( X + ( Z ` X ) ) = ( E ` X ) ) |
478 |
468 477
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) < ( E ` X ) ) |
479 |
443 445 450 464 478
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) e. ( ( Q ` i ) (,) ( E ` X ) ) ) |
480 |
479
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) e. ( ( Q ` i ) (,) ( E ` X ) ) ) |
481 |
442 480
|
sseldd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( y + ( Z ` X ) ) e. D ) |
482 |
441 481 440
|
3jca |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ph /\ ( y + ( Z ` X ) ) e. D /\ -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) ) |
483 |
|
eleq1 |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( k e. ZZ <-> -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) ) |
484 |
483
|
3anbi3d |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( ( ph /\ ( y + ( Z ` X ) ) e. D /\ k e. ZZ ) <-> ( ph /\ ( y + ( Z ` X ) ) e. D /\ -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) ) ) |
485 |
|
oveq1 |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( k x. T ) = ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
486 |
485
|
oveq2d |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( ( y + ( Z ` X ) ) + ( k x. T ) ) = ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
487 |
486
|
eleq1d |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( ( ( y + ( Z ` X ) ) + ( k x. T ) ) e. D <-> ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. D ) ) |
488 |
484 487
|
imbi12d |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( ( ( ph /\ ( y + ( Z ` X ) ) e. D /\ k e. ZZ ) -> ( ( y + ( Z ` X ) ) + ( k x. T ) ) e. D ) <-> ( ( ph /\ ( y + ( Z ` X ) ) e. D /\ -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) -> ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. D ) ) ) |
489 |
|
ovex |
|- ( y + ( Z ` X ) ) e. _V |
490 |
|
eleq1 |
|- ( x = ( y + ( Z ` X ) ) -> ( x e. D <-> ( y + ( Z ` X ) ) e. D ) ) |
491 |
490
|
3anbi2d |
|- ( x = ( y + ( Z ` X ) ) -> ( ( ph /\ x e. D /\ k e. ZZ ) <-> ( ph /\ ( y + ( Z ` X ) ) e. D /\ k e. ZZ ) ) ) |
492 |
|
oveq1 |
|- ( x = ( y + ( Z ` X ) ) -> ( x + ( k x. T ) ) = ( ( y + ( Z ` X ) ) + ( k x. T ) ) ) |
493 |
492
|
eleq1d |
|- ( x = ( y + ( Z ` X ) ) -> ( ( x + ( k x. T ) ) e. D <-> ( ( y + ( Z ` X ) ) + ( k x. T ) ) e. D ) ) |
494 |
491 493
|
imbi12d |
|- ( x = ( y + ( Z ` X ) ) -> ( ( ( ph /\ x e. D /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. D ) <-> ( ( ph /\ ( y + ( Z ` X ) ) e. D /\ k e. ZZ ) -> ( ( y + ( Z ` X ) ) + ( k x. T ) ) e. D ) ) ) |
495 |
489 494 10
|
vtocl |
|- ( ( ph /\ ( y + ( Z ` X ) ) e. D /\ k e. ZZ ) -> ( ( y + ( Z ` X ) ) + ( k x. T ) ) e. D ) |
496 |
488 495
|
vtoclg |
|- ( -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ -> ( ( ph /\ ( y + ( Z ` X ) ) e. D /\ -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) -> ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. D ) ) |
497 |
440 482 496
|
sylc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( y + ( Z ` X ) ) + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. D ) |
498 |
437 497
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ( y + ( Z ` X ) ) - ( Z ` X ) ) e. D ) |
499 |
423 498
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> y e. D ) |
500 |
499
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> A. y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) y e. D ) |
501 |
|
dfss3 |
|- ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ D <-> A. y e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) y e. D ) |
502 |
500 501
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ D ) |
503 |
204
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
504 |
412
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Z ` X ) e. CC ) |
505 |
503 504
|
negsubd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + -u ( Z ` X ) ) = ( ( Q ` i ) - ( Z ` X ) ) ) |
506 |
505
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) - ( Z ` X ) ) = ( ( Q ` i ) + -u ( Z ` X ) ) ) |
507 |
475
|
oveq1d |
|- ( ph -> ( ( E ` X ) + -u ( Z ` X ) ) = ( ( X + ( Z ` X ) ) + -u ( Z ` X ) ) ) |
508 |
474
|
recnd |
|- ( ph -> ( X + ( Z ` X ) ) e. CC ) |
509 |
508 412
|
negsubd |
|- ( ph -> ( ( X + ( Z ` X ) ) + -u ( Z ` X ) ) = ( ( X + ( Z ` X ) ) - ( Z ` X ) ) ) |
510 |
14
|
recnd |
|- ( ph -> X e. CC ) |
511 |
510 412
|
pncand |
|- ( ph -> ( ( X + ( Z ` X ) ) - ( Z ` X ) ) = X ) |
512 |
507 509 511
|
3eqtrrd |
|- ( ph -> X = ( ( E ` X ) + -u ( Z ` X ) ) ) |
513 |
512
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X = ( ( E ` X ) + -u ( Z ` X ) ) ) |
514 |
506 513
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) = ( ( ( Q ` i ) + -u ( Z ` X ) ) (,) ( ( E ` X ) + -u ( Z ` X ) ) ) ) |
515 |
451
|
renegcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u ( Z ` X ) e. RR ) |
516 |
204 278 515
|
iooshift |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) + -u ( Z ` X ) ) (,) ( ( E ` X ) + -u ( Z ` X ) ) ) = { z e. CC | E. x e. ( ( Q ` i ) (,) ( E ` X ) ) z = ( x + -u ( Z ` X ) ) } ) |
517 |
514 516
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { z e. CC | E. x e. ( ( Q ` i ) (,) ( E ` X ) ) z = ( x + -u ( Z ` X ) ) } = ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) |
518 |
517
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> { z e. CC | E. x e. ( ( Q ` i ) (,) ( E ` X ) ) z = ( x + -u ( Z ` X ) ) } = ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) |
519 |
186
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> dom F = D ) |
520 |
502 518 519
|
3sstr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> { z e. CC | E. x e. ( ( Q ` i ) (,) ( E ` X ) ) z = ( x + -u ( Z ` X ) ) } C_ dom F ) |
521 |
520
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) -> { z e. CC | E. x e. ( ( Q ` i ) (,) ( E ` X ) ) z = ( x + -u ( Z ` X ) ) } C_ dom F ) |
522 |
410
|
negeqd |
|- ( ph -> -u ( Z ` X ) = -u ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
523 |
522 433
|
eqtrd |
|- ( ph -> -u ( Z ` X ) = ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
524 |
523
|
oveq2d |
|- ( ph -> ( x + -u ( Z ` X ) ) = ( x + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
525 |
524
|
fveq2d |
|- ( ph -> ( F ` ( x + -u ( Z ` X ) ) ) = ( F ` ( x + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) ) |
526 |
525
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` i ) (,) ( E ` X ) ) ) -> ( F ` ( x + -u ( Z ` X ) ) ) = ( F ` ( x + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) ) |
527 |
526
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,) ( E ` X ) ) ) -> ( F ` ( x + -u ( Z ` X ) ) ) = ( F ` ( x + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) ) |
528 |
438
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` i ) (,) ( E ` X ) ) ) -> -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
529 |
528
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,) ( E ` X ) ) ) -> -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
530 |
|
simpl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,) ( E ` X ) ) ) -> ph ) |
531 |
231
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,) ( E ` X ) ) ) -> x e. D ) |
532 |
530 531 529
|
3jca |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,) ( E ` X ) ) ) -> ( ph /\ x e. D /\ -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) ) |
533 |
483
|
3anbi3d |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( ( ph /\ x e. D /\ k e. ZZ ) <-> ( ph /\ x e. D /\ -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) ) ) |
534 |
485
|
oveq2d |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( x + ( k x. T ) ) = ( x + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
535 |
534
|
fveq2d |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` ( x + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) ) |
536 |
535
|
eqeq1d |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) <-> ( F ` ( x + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) = ( F ` x ) ) ) |
537 |
533 536
|
imbi12d |
|- ( k = -u ( |_ ` ( ( B - X ) / T ) ) -> ( ( ( ph /\ x e. D /\ k e. ZZ ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) <-> ( ( ph /\ x e. D /\ -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) -> ( F ` ( x + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) = ( F ` x ) ) ) ) |
538 |
537 11
|
vtoclg |
|- ( -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ -> ( ( ph /\ x e. D /\ -u ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) -> ( F ` ( x + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) = ( F ` x ) ) ) |
539 |
529 532 538
|
sylc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,) ( E ` X ) ) ) -> ( F ` ( x + ( -u ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) = ( F ` x ) ) |
540 |
527 539
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( Q ` i ) (,) ( E ` X ) ) ) -> ( F ` ( x + -u ( Z ` X ) ) ) = ( F ` x ) ) |
541 |
540
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) /\ x e. ( ( Q ` i ) (,) ( E ` X ) ) ) -> ( F ` ( x + -u ( Z ` X ) ) ) = ( F ` x ) ) |
542 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) -> y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) |
543 |
384 386 390 415 416 521 541 542
|
limcperiod |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) -> y e. ( ( F |` { z e. CC | E. x e. ( ( Q ` i ) (,) ( E ` X ) ) z = ( x + -u ( Z ` X ) ) } ) limCC ( ( E ` X ) + -u ( Z ` X ) ) ) ) |
544 |
517
|
reseq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` { z e. CC | E. x e. ( ( Q ` i ) (,) ( E ` X ) ) z = ( x + -u ( Z ` X ) ) } ) = ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) ) |
545 |
513
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( E ` X ) + -u ( Z ` X ) ) = X ) |
546 |
544 545
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` { z e. CC | E. x e. ( ( Q ` i ) (,) ( E ` X ) ) z = ( x + -u ( Z ` X ) ) } ) limCC ( ( E ` X ) + -u ( Z ` X ) ) ) = ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) |
547 |
546
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` { z e. CC | E. x e. ( ( Q ` i ) (,) ( E ` X ) ) z = ( x + -u ( Z ` X ) ) } ) limCC ( ( E ` X ) + -u ( Z ` X ) ) ) = ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) |
548 |
547
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) -> ( ( F |` { z e. CC | E. x e. ( ( Q ` i ) (,) ( E ` X ) ) z = ( x + -u ( Z ` X ) ) } ) limCC ( ( E ` X ) + -u ( Z ` X ) ) ) = ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) |
549 |
543 548
|
eleqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) -> y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) |
550 |
382
|
adantr |
|- ( ( ph /\ y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) -> F : dom F --> CC ) |
551 |
550
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) -> F : dom F --> CC ) |
552 |
417
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ CC ) |
553 |
502 519
|
sseqtrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ dom F ) |
554 |
553
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ dom F ) |
555 |
412
|
adantr |
|- ( ( ph /\ y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) -> ( Z ` X ) e. CC ) |
556 |
555
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) -> ( Z ` X ) e. CC ) |
557 |
|
eqid |
|- { z e. CC | E. x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) z = ( x + ( Z ` X ) ) } = { z e. CC | E. x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) z = ( x + ( Z ` X ) ) } |
558 |
503 504
|
npcand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) + ( Z ` X ) ) = ( Q ` i ) ) |
559 |
558
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( ( Q ` i ) - ( Z ` X ) ) + ( Z ` X ) ) ) |
560 |
475
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E ` X ) = ( X + ( Z ` X ) ) ) |
561 |
559 560
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( E ` X ) ) = ( ( ( ( Q ` i ) - ( Z ` X ) ) + ( Z ` X ) ) (,) ( X + ( Z ` X ) ) ) ) |
562 |
14
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. RR ) |
563 |
452 562 451
|
iooshift |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( ( Q ` i ) - ( Z ` X ) ) + ( Z ` X ) ) (,) ( X + ( Z ` X ) ) ) = { z e. CC | E. x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) z = ( x + ( Z ` X ) ) } ) |
564 |
561 563
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { z e. CC | E. x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) z = ( x + ( Z ` X ) ) } = ( ( Q ` i ) (,) ( E ` X ) ) ) |
565 |
564
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> { z e. CC | E. x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) z = ( x + ( Z ` X ) ) } = ( ( Q ` i ) (,) ( E ` X ) ) ) |
566 |
231 565 519
|
3sstr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> { z e. CC | E. x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) z = ( x + ( Z ` X ) ) } C_ dom F ) |
567 |
566
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) -> { z e. CC | E. x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) z = ( x + ( Z ` X ) ) } C_ dom F ) |
568 |
410
|
oveq2d |
|- ( ph -> ( x + ( Z ` X ) ) = ( x + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
569 |
568
|
fveq2d |
|- ( ph -> ( F ` ( x + ( Z ` X ) ) ) = ( F ` ( x + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) ) |
570 |
569
|
adantr |
|- ( ( ph /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( F ` ( x + ( Z ` X ) ) ) = ( F ` ( x + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) ) |
571 |
570
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( F ` ( x + ( Z ` X ) ) ) = ( F ` ( x + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) ) |
572 |
407
|
adantr |
|- ( ( ph /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
573 |
572
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
574 |
|
simpl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ph ) |
575 |
502
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> x e. D ) |
576 |
574 575 573
|
3jca |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( ph /\ x e. D /\ ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) ) |
577 |
|
eleq1 |
|- ( k = ( |_ ` ( ( B - X ) / T ) ) -> ( k e. ZZ <-> ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) ) |
578 |
577
|
3anbi3d |
|- ( k = ( |_ ` ( ( B - X ) / T ) ) -> ( ( ph /\ x e. D /\ k e. ZZ ) <-> ( ph /\ x e. D /\ ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) ) ) |
579 |
|
oveq1 |
|- ( k = ( |_ ` ( ( B - X ) / T ) ) -> ( k x. T ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
580 |
579
|
oveq2d |
|- ( k = ( |_ ` ( ( B - X ) / T ) ) -> ( x + ( k x. T ) ) = ( x + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
581 |
580
|
fveq2d |
|- ( k = ( |_ ` ( ( B - X ) / T ) ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` ( x + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) ) |
582 |
581
|
eqeq1d |
|- ( k = ( |_ ` ( ( B - X ) / T ) ) -> ( ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) <-> ( F ` ( x + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) = ( F ` x ) ) ) |
583 |
578 582
|
imbi12d |
|- ( k = ( |_ ` ( ( B - X ) / T ) ) -> ( ( ( ph /\ x e. D /\ k e. ZZ ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) <-> ( ( ph /\ x e. D /\ ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) -> ( F ` ( x + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) = ( F ` x ) ) ) ) |
584 |
583 11
|
vtoclg |
|- ( ( |_ ` ( ( B - X ) / T ) ) e. ZZ -> ( ( ph /\ x e. D /\ ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) -> ( F ` ( x + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) = ( F ` x ) ) ) |
585 |
573 576 584
|
sylc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( F ` ( x + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) = ( F ` x ) ) |
586 |
571 585
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( F ` ( x + ( Z ` X ) ) ) = ( F ` x ) ) |
587 |
586
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> ( F ` ( x + ( Z ` X ) ) ) = ( F ` x ) ) |
588 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) -> y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) |
589 |
551 552 554 556 557 567 587 588
|
limcperiod |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) -> y e. ( ( F |` { z e. CC | E. x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) z = ( x + ( Z ` X ) ) } ) limCC ( X + ( Z ` X ) ) ) ) |
590 |
564
|
reseq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` { z e. CC | E. x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) z = ( x + ( Z ` X ) ) } ) = ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) ) |
591 |
476
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( Z ` X ) ) = ( E ` X ) ) |
592 |
590 591
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` { z e. CC | E. x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) z = ( x + ( Z ` X ) ) } ) limCC ( X + ( Z ` X ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) |
593 |
592
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` { z e. CC | E. x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) z = ( x + ( Z ` X ) ) } ) limCC ( X + ( Z ` X ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) |
594 |
593
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) -> ( ( F |` { z e. CC | E. x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) z = ( x + ( Z ` X ) ) } ) limCC ( X + ( Z ` X ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) |
595 |
589 594
|
eleqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) -> y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) |
596 |
549 595
|
impbida |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( y e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) <-> y e. ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) ) |
597 |
596
|
eqrdv |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) = ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) |
598 |
|
resindm |
|- ( Rel F -> ( F |` ( ( -oo (,) X ) i^i dom F ) ) = ( F |` ( -oo (,) X ) ) ) |
599 |
598
|
eqcomd |
|- ( Rel F -> ( F |` ( -oo (,) X ) ) = ( F |` ( ( -oo (,) X ) i^i dom F ) ) ) |
600 |
181 599
|
syl |
|- ( ph -> ( F |` ( -oo (,) X ) ) = ( F |` ( ( -oo (,) X ) i^i dom F ) ) ) |
601 |
186
|
ineq2d |
|- ( ph -> ( ( -oo (,) X ) i^i dom F ) = ( ( -oo (,) X ) i^i D ) ) |
602 |
601
|
reseq2d |
|- ( ph -> ( F |` ( ( -oo (,) X ) i^i dom F ) ) = ( F |` ( ( -oo (,) X ) i^i D ) ) ) |
603 |
600 602
|
eqtrd |
|- ( ph -> ( F |` ( -oo (,) X ) ) = ( F |` ( ( -oo (,) X ) i^i D ) ) ) |
604 |
603
|
oveq1d |
|- ( ph -> ( ( F |` ( -oo (,) X ) ) limCC X ) = ( ( F |` ( ( -oo (,) X ) i^i D ) ) limCC X ) ) |
605 |
604
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( -oo (,) X ) ) limCC X ) = ( ( F |` ( ( -oo (,) X ) i^i D ) ) limCC X ) ) |
606 |
|
inss2 |
|- ( ( -oo (,) X ) i^i D ) C_ D |
607 |
606
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( -oo (,) X ) i^i D ) C_ D ) |
608 |
195 607
|
fssresd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( F |` ( ( -oo (,) X ) i^i D ) ) : ( ( -oo (,) X ) i^i D ) --> CC ) |
609 |
452
|
mnfltd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -oo < ( ( Q ` i ) - ( Z ` X ) ) ) |
610 |
200 453 609
|
xrltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -oo <_ ( ( Q ` i ) - ( Z ` X ) ) ) |
611 |
|
iooss1 |
|- ( ( -oo e. RR* /\ -oo <_ ( ( Q ` i ) - ( Z ` X ) ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ ( -oo (,) X ) ) |
612 |
199 610 611
|
sylancr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ ( -oo (,) X ) ) |
613 |
612
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ ( -oo (,) X ) ) |
614 |
613 502
|
ssind |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) C_ ( ( -oo (,) X ) i^i D ) ) |
615 |
606 234
|
sstrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( -oo (,) X ) i^i D ) C_ CC ) |
616 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) |
617 |
453
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) - ( Z ` X ) ) e. RR* ) |
618 |
455
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> X e. RR* ) |
619 |
475
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) = ( X + ( Z ` X ) ) ) |
620 |
241 619
|
breqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( X + ( Z ` X ) ) ) |
621 |
411
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Z ` X ) e. RR ) |
622 |
14
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> X e. RR ) |
623 |
216 621 622
|
ltsubaddd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) < X <-> ( Q ` i ) < ( X + ( Z ` X ) ) ) ) |
624 |
620 623
|
mpbird |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) - ( Z ` X ) ) < X ) |
625 |
14
|
leidd |
|- ( ph -> X <_ X ) |
626 |
625
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> X <_ X ) |
627 |
617 618 618 624 626
|
eliocd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> X e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) |
628 |
|
ioounsn |
|- ( ( ( ( Q ` i ) - ( Z ` X ) ) e. RR* /\ X e. RR* /\ ( ( Q ` i ) - ( Z ` X ) ) < X ) -> ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) u. { X } ) = ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) |
629 |
617 618 624 628
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) u. { X } ) = ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) |
630 |
629
|
fveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) ` ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) u. { X } ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) ` ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) ) |
631 |
|
ovex |
|- ( -oo (,) X ) e. _V |
632 |
631
|
inex1 |
|- ( ( -oo (,) X ) i^i D ) e. _V |
633 |
|
snex |
|- { X } e. _V |
634 |
632 633
|
unex |
|- ( ( ( -oo (,) X ) i^i D ) u. { X } ) e. _V |
635 |
|
resttop |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( ( -oo (,) X ) i^i D ) u. { X } ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) e. Top ) |
636 |
247 634 635
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) e. Top |
637 |
634
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( -oo (,) X ) i^i D ) u. { X } ) e. _V ) |
638 |
|
iooretop |
|- ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) e. ( topGen ` ran (,) ) |
639 |
638
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) e. ( topGen ` ran (,) ) ) |
640 |
|
elrestr |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( ( -oo (,) X ) i^i D ) u. { X } ) e. _V /\ ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) e. ( topGen ` ran (,) ) ) -> ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) |
641 |
255 637 639 640
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) |
642 |
453
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> ( ( Q ` i ) - ( Z ` X ) ) e. RR* ) |
643 |
262
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> +oo e. RR* ) |
644 |
14
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> X e. RR ) |
645 |
|
iocssre |
|- ( ( ( ( Q ` i ) - ( Z ` X ) ) e. RR* /\ X e. RR ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) C_ RR ) |
646 |
642 644 645
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) C_ RR ) |
647 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) |
648 |
646 647
|
sseldd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> x e. RR ) |
649 |
455
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> X e. RR* ) |
650 |
|
iocgtlb |
|- ( ( ( ( Q ` i ) - ( Z ` X ) ) e. RR* /\ X e. RR* /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> ( ( Q ` i ) - ( Z ` X ) ) < x ) |
651 |
642 649 647 650
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> ( ( Q ` i ) - ( Z ` X ) ) < x ) |
652 |
648
|
ltpnfd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> x < +oo ) |
653 |
642 643 648 651 652
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) ) |
654 |
653
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) ) |
655 |
|
eqvisset |
|- ( x = X -> X e. _V ) |
656 |
|
snidg |
|- ( X e. _V -> X e. { X } ) |
657 |
655 656
|
syl |
|- ( x = X -> X e. { X } ) |
658 |
470 657
|
eqeltrd |
|- ( x = X -> x e. { X } ) |
659 |
|
elun2 |
|- ( x e. { X } -> x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) |
660 |
658 659
|
syl |
|- ( x = X -> x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) |
661 |
660
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) /\ x = X ) -> x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) |
662 |
|
simpll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) /\ -. x = X ) -> ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
663 |
642
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) /\ -. x = X ) -> ( ( Q ` i ) - ( Z ` X ) ) e. RR* ) |
664 |
455
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) /\ -. x = X ) -> X e. RR* ) |
665 |
648
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) /\ -. x = X ) -> x e. RR ) |
666 |
651
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) /\ -. x = X ) -> ( ( Q ` i ) - ( Z ` X ) ) < x ) |
667 |
14
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) /\ -. x = X ) -> X e. RR ) |
668 |
|
iocleub |
|- ( ( ( ( Q ` i ) - ( Z ` X ) ) e. RR* /\ X e. RR* /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> x <_ X ) |
669 |
642 649 647 668
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> x <_ X ) |
670 |
669
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) /\ -. x = X ) -> x <_ X ) |
671 |
470
|
eqcoms |
|- ( X = x -> x = X ) |
672 |
671
|
necon3bi |
|- ( -. x = X -> X =/= x ) |
673 |
672
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) /\ -. x = X ) -> X =/= x ) |
674 |
665 667 670 673
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) /\ -. x = X ) -> x < X ) |
675 |
663 664 665 666 674
|
eliood |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) /\ -. x = X ) -> x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) |
676 |
675
|
3adantll3 |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) /\ -. x = X ) -> x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) |
677 |
614
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> x e. ( ( -oo (,) X ) i^i D ) ) |
678 |
|
elun1 |
|- ( x e. ( ( -oo (,) X ) i^i D ) -> x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) |
679 |
677 678
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) -> x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) |
680 |
662 676 679
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) /\ -. x = X ) -> x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) |
681 |
661 680
|
pm2.61dan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) |
682 |
654 681
|
elind |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) -> x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) |
683 |
617
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) -> ( ( Q ` i ) - ( Z ` X ) ) e. RR* ) |
684 |
618
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) -> X e. RR* ) |
685 |
|
elinel1 |
|- ( x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) -> x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) ) |
686 |
|
elioore |
|- ( x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) -> x e. RR ) |
687 |
685 686
|
syl |
|- ( x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) -> x e. RR ) |
688 |
687
|
rexrd |
|- ( x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) -> x e. RR* ) |
689 |
688
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) -> x e. RR* ) |
690 |
453
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) -> ( ( Q ` i ) - ( Z ` X ) ) e. RR* ) |
691 |
262
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) -> +oo e. RR* ) |
692 |
685
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) -> x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) ) |
693 |
|
ioogtlb |
|- ( ( ( ( Q ` i ) - ( Z ` X ) ) e. RR* /\ +oo e. RR* /\ x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) ) -> ( ( Q ` i ) - ( Z ` X ) ) < x ) |
694 |
690 691 692 693
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) -> ( ( Q ` i ) - ( Z ` X ) ) < x ) |
695 |
694
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) -> ( ( Q ` i ) - ( Z ` X ) ) < x ) |
696 |
|
elinel2 |
|- ( x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) -> x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) |
697 |
|
elsni |
|- ( x e. { X } -> x = X ) |
698 |
697
|
adantl |
|- ( ( ph /\ x e. { X } ) -> x = X ) |
699 |
625
|
adantr |
|- ( ( ph /\ x e. { X } ) -> X <_ X ) |
700 |
698 699
|
eqbrtrd |
|- ( ( ph /\ x e. { X } ) -> x <_ X ) |
701 |
700
|
adantlr |
|- ( ( ( ph /\ x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) /\ x e. { X } ) -> x <_ X ) |
702 |
|
simpll |
|- ( ( ( ph /\ x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) /\ -. x e. { X } ) -> ph ) |
703 |
|
elunnel2 |
|- ( ( x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) /\ -. x e. { X } ) -> x e. ( ( -oo (,) X ) i^i D ) ) |
704 |
703
|
adantll |
|- ( ( ( ph /\ x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) /\ -. x e. { X } ) -> x e. ( ( -oo (,) X ) i^i D ) ) |
705 |
|
elinel1 |
|- ( x e. ( ( -oo (,) X ) i^i D ) -> x e. ( -oo (,) X ) ) |
706 |
704 705
|
syl |
|- ( ( ( ph /\ x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) /\ -. x e. { X } ) -> x e. ( -oo (,) X ) ) |
707 |
|
elioore |
|- ( x e. ( -oo (,) X ) -> x e. RR ) |
708 |
707
|
adantl |
|- ( ( ph /\ x e. ( -oo (,) X ) ) -> x e. RR ) |
709 |
14
|
adantr |
|- ( ( ph /\ x e. ( -oo (,) X ) ) -> X e. RR ) |
710 |
199
|
a1i |
|- ( ( ph /\ x e. ( -oo (,) X ) ) -> -oo e. RR* ) |
711 |
455
|
adantr |
|- ( ( ph /\ x e. ( -oo (,) X ) ) -> X e. RR* ) |
712 |
|
simpr |
|- ( ( ph /\ x e. ( -oo (,) X ) ) -> x e. ( -oo (,) X ) ) |
713 |
|
iooltub |
|- ( ( -oo e. RR* /\ X e. RR* /\ x e. ( -oo (,) X ) ) -> x < X ) |
714 |
710 711 712 713
|
syl3anc |
|- ( ( ph /\ x e. ( -oo (,) X ) ) -> x < X ) |
715 |
708 709 714
|
ltled |
|- ( ( ph /\ x e. ( -oo (,) X ) ) -> x <_ X ) |
716 |
702 706 715
|
syl2anc |
|- ( ( ( ph /\ x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) /\ -. x e. { X } ) -> x <_ X ) |
717 |
701 716
|
pm2.61dan |
|- ( ( ph /\ x e. ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) -> x <_ X ) |
718 |
696 717
|
sylan2 |
|- ( ( ph /\ x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) -> x <_ X ) |
719 |
718
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) -> x <_ X ) |
720 |
683 684 689 695 719
|
eliocd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) /\ x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) -> x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) |
721 |
682 720
|
impbida |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( x e. ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) <-> x e. ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) ) |
722 |
721
|
eqrdv |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) = ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) +oo ) i^i ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) |
723 |
606 8
|
sstrid |
|- ( ph -> ( ( -oo (,) X ) i^i D ) C_ RR ) |
724 |
14
|
snssd |
|- ( ph -> { X } C_ RR ) |
725 |
723 724
|
unssd |
|- ( ph -> ( ( ( -oo (,) X ) i^i D ) u. { X } ) C_ RR ) |
726 |
725
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( -oo (,) X ) i^i D ) u. { X } ) C_ RR ) |
727 |
236 369
|
rerest |
|- ( ( ( ( -oo (,) X ) i^i D ) u. { X } ) C_ RR -> ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) = ( ( topGen ` ran (,) ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) |
728 |
726 727
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) = ( ( topGen ` ran (,) ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) |
729 |
641 722 728
|
3eltr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) e. ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) |
730 |
|
isopn3i |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) e. Top /\ ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) e. ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) ` ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) = ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) |
731 |
636 729 730
|
sylancr |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) ` ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) = ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) ) |
732 |
630 731
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( Q ` i ) - ( Z ` X ) ) (,] X ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) ` ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) u. { X } ) ) ) |
733 |
627 732
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> X e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( -oo (,) X ) i^i D ) u. { X } ) ) ) ` ( ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) u. { X } ) ) ) |
734 |
608 614 615 236 616 733
|
limcres |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( F |` ( ( -oo (,) X ) i^i D ) ) |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) = ( ( F |` ( ( -oo (,) X ) i^i D ) ) limCC X ) ) |
735 |
734
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( -oo (,) X ) i^i D ) ) limCC X ) = ( ( ( F |` ( ( -oo (,) X ) i^i D ) ) |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) |
736 |
614
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( -oo (,) X ) i^i D ) ) |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) = ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) ) |
737 |
736
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( F |` ( ( -oo (,) X ) i^i D ) ) |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) = ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) ) |
738 |
605 735 737
|
3eqtrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( ( Q ` i ) - ( Z ` X ) ) (,) X ) ) limCC X ) = ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
739 |
380 597 738
|
3eqtrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( -oo (,) X ) ) limCC X ) = ( ( F |` ( -oo (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) |
740 |
739
|
rexlimdv3a |
|- ( ph -> ( E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( -oo (,) X ) ) limCC X ) = ( ( F |` ( -oo (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) ) |
741 |
179 740
|
mpd |
|- ( ph -> ( ( F |` ( -oo (,) X ) ) limCC X ) = ( ( F |` ( -oo (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) |
742 |
126
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
743 |
12
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
744 |
13
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
745 |
|
eqid |
|- if ( ( E ` X ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( E ` X ) ) ) = if ( ( E ` X ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( E ` X ) ) ) |
746 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) u. { ( Q ` ( i + 1 ) ) } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) u. { ( Q ` ( i + 1 ) ) } ) ) |
747 |
216 214 742 743 744 216 238 241 222 745 746
|
fourierdlem33 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> if ( ( E ` X ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( E ` X ) ) ) e. ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) |
748 |
222
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( E ` X ) ) ) = ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) ) |
749 |
748
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) = ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) |
750 |
747 749
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> if ( ( E ` X ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( E ` X ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) ) |
751 |
|
ne0i |
|- ( if ( ( E ` X ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( E ` X ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) -> ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) =/= (/) ) |
752 |
750 751
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( E ` X ) ) ) limCC ( E ` X ) ) =/= (/) ) |
753 |
380 752
|
eqnetrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( -oo (,) ( E ` X ) ) ) limCC ( E ` X ) ) =/= (/) ) |
754 |
753
|
rexlimdv3a |
|- ( ph -> ( E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( -oo (,) ( E ` X ) ) ) limCC ( E ` X ) ) =/= (/) ) ) |
755 |
179 754
|
mpd |
|- ( ph -> ( ( F |` ( -oo (,) ( E ` X ) ) ) limCC ( E ` X ) ) =/= (/) ) |
756 |
741 755
|
eqnetrd |
|- ( ph -> ( ( F |` ( -oo (,) X ) ) limCC X ) =/= (/) ) |