| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem33.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | fourierdlem33.2 |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | fourierdlem33.3 |  |-  ( ph -> A < B ) | 
						
							| 4 |  | fourierdlem33.4 |  |-  ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) | 
						
							| 5 |  | fourierdlem33.5 |  |-  ( ph -> L e. ( F limCC B ) ) | 
						
							| 6 |  | fourierdlem33.6 |  |-  ( ph -> C e. RR ) | 
						
							| 7 |  | fourierdlem33.7 |  |-  ( ph -> D e. RR ) | 
						
							| 8 |  | fourierdlem33.8 |  |-  ( ph -> C < D ) | 
						
							| 9 |  | fourierdlem33.ss |  |-  ( ph -> ( C (,) D ) C_ ( A (,) B ) ) | 
						
							| 10 |  | fourierdlem33.y |  |-  Y = if ( D = B , L , ( F ` D ) ) | 
						
							| 11 |  | fourierdlem33.10 |  |-  J = ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) | 
						
							| 12 | 5 | adantr |  |-  ( ( ph /\ D = B ) -> L e. ( F limCC B ) ) | 
						
							| 13 |  | iftrue |  |-  ( D = B -> if ( D = B , L , ( F ` D ) ) = L ) | 
						
							| 14 | 10 13 | eqtr2id |  |-  ( D = B -> L = Y ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ D = B ) -> L = Y ) | 
						
							| 16 |  | oveq2 |  |-  ( D = B -> ( ( F |` ( C (,) D ) ) limCC D ) = ( ( F |` ( C (,) D ) ) limCC B ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ D = B ) -> ( ( F |` ( C (,) D ) ) limCC D ) = ( ( F |` ( C (,) D ) ) limCC B ) ) | 
						
							| 18 |  | cncff |  |-  ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC ) | 
						
							| 19 | 4 18 | syl |  |-  ( ph -> F : ( A (,) B ) --> CC ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ D = B ) -> F : ( A (,) B ) --> CC ) | 
						
							| 21 | 9 | adantr |  |-  ( ( ph /\ D = B ) -> ( C (,) D ) C_ ( A (,) B ) ) | 
						
							| 22 |  | ioosscn |  |-  ( A (,) B ) C_ CC | 
						
							| 23 | 22 | a1i |  |-  ( ( ph /\ D = B ) -> ( A (,) B ) C_ CC ) | 
						
							| 24 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 25 | 7 | leidd |  |-  ( ph -> D <_ D ) | 
						
							| 26 | 6 | rexrd |  |-  ( ph -> C e. RR* ) | 
						
							| 27 |  | elioc2 |  |-  ( ( C e. RR* /\ D e. RR ) -> ( D e. ( C (,] D ) <-> ( D e. RR /\ C < D /\ D <_ D ) ) ) | 
						
							| 28 | 26 7 27 | syl2anc |  |-  ( ph -> ( D e. ( C (,] D ) <-> ( D e. RR /\ C < D /\ D <_ D ) ) ) | 
						
							| 29 | 7 8 25 28 | mpbir3and |  |-  ( ph -> D e. ( C (,] D ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ D = B ) -> D e. ( C (,] D ) ) | 
						
							| 31 |  | eqcom |  |-  ( D = B <-> B = D ) | 
						
							| 32 | 31 | biimpi |  |-  ( D = B -> B = D ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ D = B ) -> B = D ) | 
						
							| 34 | 24 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 35 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 36 | 2 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 37 |  | ioounsn |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) | 
						
							| 38 | 35 36 3 37 | syl3anc |  |-  ( ph -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) | 
						
							| 39 |  | ovex |  |-  ( A (,] B ) e. _V | 
						
							| 40 | 39 | a1i |  |-  ( ph -> ( A (,] B ) e. _V ) | 
						
							| 41 | 38 40 | eqeltrd |  |-  ( ph -> ( ( A (,) B ) u. { B } ) e. _V ) | 
						
							| 42 |  | resttop |  |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( A (,) B ) u. { B } ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. Top ) | 
						
							| 43 | 34 41 42 | sylancr |  |-  ( ph -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. Top ) | 
						
							| 44 | 11 43 | eqeltrid |  |-  ( ph -> J e. Top ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ph /\ D = B ) -> J e. Top ) | 
						
							| 46 |  | oveq2 |  |-  ( D = B -> ( C (,] D ) = ( C (,] B ) ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ph /\ D = B ) -> ( C (,] D ) = ( C (,] B ) ) | 
						
							| 48 | 26 | adantr |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> C e. RR* ) | 
						
							| 49 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 50 | 49 | a1i |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> +oo e. RR* ) | 
						
							| 51 |  | simpr |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( C (,] B ) ) | 
						
							| 52 | 2 | adantr |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> B e. RR ) | 
						
							| 53 |  | elioc2 |  |-  ( ( C e. RR* /\ B e. RR ) -> ( x e. ( C (,] B ) <-> ( x e. RR /\ C < x /\ x <_ B ) ) ) | 
						
							| 54 | 48 52 53 | syl2anc |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> ( x e. ( C (,] B ) <-> ( x e. RR /\ C < x /\ x <_ B ) ) ) | 
						
							| 55 | 51 54 | mpbid |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> ( x e. RR /\ C < x /\ x <_ B ) ) | 
						
							| 56 | 55 | simp1d |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> x e. RR ) | 
						
							| 57 | 55 | simp2d |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> C < x ) | 
						
							| 58 | 56 | ltpnfd |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> x < +oo ) | 
						
							| 59 | 48 50 56 57 58 | eliood |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( C (,) +oo ) ) | 
						
							| 60 | 1 | adantr |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> A e. RR ) | 
						
							| 61 | 6 | adantr |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> C e. RR ) | 
						
							| 62 | 1 2 6 7 8 9 | fourierdlem10 |  |-  ( ph -> ( A <_ C /\ D <_ B ) ) | 
						
							| 63 | 62 | simpld |  |-  ( ph -> A <_ C ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> A <_ C ) | 
						
							| 65 | 60 61 56 64 57 | lelttrd |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> A < x ) | 
						
							| 66 | 55 | simp3d |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> x <_ B ) | 
						
							| 67 | 35 | adantr |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> A e. RR* ) | 
						
							| 68 |  | elioc2 |  |-  ( ( A e. RR* /\ B e. RR ) -> ( x e. ( A (,] B ) <-> ( x e. RR /\ A < x /\ x <_ B ) ) ) | 
						
							| 69 | 67 52 68 | syl2anc |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> ( x e. ( A (,] B ) <-> ( x e. RR /\ A < x /\ x <_ B ) ) ) | 
						
							| 70 | 56 65 66 69 | mpbir3and |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( A (,] B ) ) | 
						
							| 71 | 59 70 | elind |  |-  ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) | 
						
							| 72 |  | elinel1 |  |-  ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. ( C (,) +oo ) ) | 
						
							| 73 |  | elioore |  |-  ( x e. ( C (,) +oo ) -> x e. RR ) | 
						
							| 74 | 72 73 | syl |  |-  ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. RR ) | 
						
							| 75 | 74 | adantl |  |-  ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. RR ) | 
						
							| 76 | 26 | adantr |  |-  ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> C e. RR* ) | 
						
							| 77 | 49 | a1i |  |-  ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> +oo e. RR* ) | 
						
							| 78 | 72 | adantl |  |-  ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( C (,) +oo ) ) | 
						
							| 79 |  | ioogtlb |  |-  ( ( C e. RR* /\ +oo e. RR* /\ x e. ( C (,) +oo ) ) -> C < x ) | 
						
							| 80 | 76 77 78 79 | syl3anc |  |-  ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> C < x ) | 
						
							| 81 |  | elinel2 |  |-  ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. ( A (,] B ) ) | 
						
							| 82 | 81 | adantl |  |-  ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( A (,] B ) ) | 
						
							| 83 | 35 | adantr |  |-  ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> A e. RR* ) | 
						
							| 84 | 2 | adantr |  |-  ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> B e. RR ) | 
						
							| 85 | 83 84 68 | syl2anc |  |-  ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> ( x e. ( A (,] B ) <-> ( x e. RR /\ A < x /\ x <_ B ) ) ) | 
						
							| 86 | 82 85 | mpbid |  |-  ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> ( x e. RR /\ A < x /\ x <_ B ) ) | 
						
							| 87 | 86 | simp3d |  |-  ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x <_ B ) | 
						
							| 88 | 76 84 53 | syl2anc |  |-  ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> ( x e. ( C (,] B ) <-> ( x e. RR /\ C < x /\ x <_ B ) ) ) | 
						
							| 89 | 75 80 87 88 | mpbir3and |  |-  ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( C (,] B ) ) | 
						
							| 90 | 71 89 | impbida |  |-  ( ph -> ( x e. ( C (,] B ) <-> x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) ) | 
						
							| 91 | 90 | eqrdv |  |-  ( ph -> ( C (,] B ) = ( ( C (,) +oo ) i^i ( A (,] B ) ) ) | 
						
							| 92 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 93 | 92 | a1i |  |-  ( ph -> ( topGen ` ran (,) ) e. Top ) | 
						
							| 94 |  | iooretop |  |-  ( C (,) +oo ) e. ( topGen ` ran (,) ) | 
						
							| 95 | 94 | a1i |  |-  ( ph -> ( C (,) +oo ) e. ( topGen ` ran (,) ) ) | 
						
							| 96 |  | elrestr |  |-  ( ( ( topGen ` ran (,) ) e. Top /\ ( A (,] B ) e. _V /\ ( C (,) +oo ) e. ( topGen ` ran (,) ) ) -> ( ( C (,) +oo ) i^i ( A (,] B ) ) e. ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) ) | 
						
							| 97 | 93 40 95 96 | syl3anc |  |-  ( ph -> ( ( C (,) +oo ) i^i ( A (,] B ) ) e. ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) ) | 
						
							| 98 | 91 97 | eqeltrd |  |-  ( ph -> ( C (,] B ) e. ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) ) | 
						
							| 99 | 98 | adantr |  |-  ( ( ph /\ D = B ) -> ( C (,] B ) e. ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) ) | 
						
							| 100 | 47 99 | eqeltrd |  |-  ( ( ph /\ D = B ) -> ( C (,] D ) e. ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) ) | 
						
							| 101 | 11 | a1i |  |-  ( ph -> J = ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) ) | 
						
							| 102 | 38 | oveq2d |  |-  ( ph -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) | 
						
							| 103 | 34 | a1i |  |-  ( ph -> ( TopOpen ` CCfld ) e. Top ) | 
						
							| 104 |  | iocssre |  |-  ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) | 
						
							| 105 | 35 2 104 | syl2anc |  |-  ( ph -> ( A (,] B ) C_ RR ) | 
						
							| 106 |  | reex |  |-  RR e. _V | 
						
							| 107 | 106 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 108 |  | restabs |  |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( A (,] B ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A (,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) | 
						
							| 109 | 103 105 107 108 | syl3anc |  |-  ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A (,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) | 
						
							| 110 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 111 | 110 | eqcomi |  |-  ( ( TopOpen ` CCfld ) |`t RR ) = ( topGen ` ran (,) ) | 
						
							| 112 | 111 | oveq1i |  |-  ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A (,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) | 
						
							| 113 | 109 112 | eqtr3di |  |-  ( ph -> ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) ) | 
						
							| 114 | 101 102 113 | 3eqtrrd |  |-  ( ph -> ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) = J ) | 
						
							| 115 | 114 | adantr |  |-  ( ( ph /\ D = B ) -> ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) = J ) | 
						
							| 116 | 100 115 | eleqtrd |  |-  ( ( ph /\ D = B ) -> ( C (,] D ) e. J ) | 
						
							| 117 |  | isopn3i |  |-  ( ( J e. Top /\ ( C (,] D ) e. J ) -> ( ( int ` J ) ` ( C (,] D ) ) = ( C (,] D ) ) | 
						
							| 118 | 45 116 117 | syl2anc |  |-  ( ( ph /\ D = B ) -> ( ( int ` J ) ` ( C (,] D ) ) = ( C (,] D ) ) | 
						
							| 119 | 30 33 118 | 3eltr4d |  |-  ( ( ph /\ D = B ) -> B e. ( ( int ` J ) ` ( C (,] D ) ) ) | 
						
							| 120 |  | sneq |  |-  ( D = B -> { D } = { B } ) | 
						
							| 121 | 120 | eqcomd |  |-  ( D = B -> { B } = { D } ) | 
						
							| 122 | 121 | uneq2d |  |-  ( D = B -> ( ( C (,) D ) u. { B } ) = ( ( C (,) D ) u. { D } ) ) | 
						
							| 123 | 122 | adantl |  |-  ( ( ph /\ D = B ) -> ( ( C (,) D ) u. { B } ) = ( ( C (,) D ) u. { D } ) ) | 
						
							| 124 | 7 | rexrd |  |-  ( ph -> D e. RR* ) | 
						
							| 125 |  | ioounsn |  |-  ( ( C e. RR* /\ D e. RR* /\ C < D ) -> ( ( C (,) D ) u. { D } ) = ( C (,] D ) ) | 
						
							| 126 | 26 124 8 125 | syl3anc |  |-  ( ph -> ( ( C (,) D ) u. { D } ) = ( C (,] D ) ) | 
						
							| 127 | 126 | adantr |  |-  ( ( ph /\ D = B ) -> ( ( C (,) D ) u. { D } ) = ( C (,] D ) ) | 
						
							| 128 | 123 127 | eqtr2d |  |-  ( ( ph /\ D = B ) -> ( C (,] D ) = ( ( C (,) D ) u. { B } ) ) | 
						
							| 129 | 128 | fveq2d |  |-  ( ( ph /\ D = B ) -> ( ( int ` J ) ` ( C (,] D ) ) = ( ( int ` J ) ` ( ( C (,) D ) u. { B } ) ) ) | 
						
							| 130 | 119 129 | eleqtrd |  |-  ( ( ph /\ D = B ) -> B e. ( ( int ` J ) ` ( ( C (,) D ) u. { B } ) ) ) | 
						
							| 131 | 20 21 23 24 11 130 | limcres |  |-  ( ( ph /\ D = B ) -> ( ( F |` ( C (,) D ) ) limCC B ) = ( F limCC B ) ) | 
						
							| 132 | 17 131 | eqtr2d |  |-  ( ( ph /\ D = B ) -> ( F limCC B ) = ( ( F |` ( C (,) D ) ) limCC D ) ) | 
						
							| 133 | 12 15 132 | 3eltr3d |  |-  ( ( ph /\ D = B ) -> Y e. ( ( F |` ( C (,) D ) ) limCC D ) ) | 
						
							| 134 |  | limcresi |  |-  ( F limCC D ) C_ ( ( F |` ( C (,) D ) ) limCC D ) | 
						
							| 135 |  | iffalse |  |-  ( -. D = B -> if ( D = B , L , ( F ` D ) ) = ( F ` D ) ) | 
						
							| 136 | 10 135 | eqtrid |  |-  ( -. D = B -> Y = ( F ` D ) ) | 
						
							| 137 | 136 | adantl |  |-  ( ( ph /\ -. D = B ) -> Y = ( F ` D ) ) | 
						
							| 138 |  | ssid |  |-  CC C_ CC | 
						
							| 139 | 138 | a1i |  |-  ( ph -> CC C_ CC ) | 
						
							| 140 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) | 
						
							| 141 |  | unicntop |  |-  CC = U. ( TopOpen ` CCfld ) | 
						
							| 142 | 141 | restid |  |-  ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) | 
						
							| 143 | 34 142 | ax-mp |  |-  ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) | 
						
							| 144 | 143 | eqcomi |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 145 | 24 140 144 | cncfcn |  |-  ( ( ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 146 | 22 139 145 | sylancr |  |-  ( ph -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 147 | 4 146 | eleqtrd |  |-  ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 148 | 24 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 149 | 22 | a1i |  |-  ( ph -> ( A (,) B ) C_ CC ) | 
						
							| 150 |  | resttopon |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A (,) B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) ) | 
						
							| 151 | 148 149 150 | sylancr |  |-  ( ph -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) ) | 
						
							| 152 | 148 | a1i |  |-  ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 153 |  | cncnp |  |-  ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) | 
						
							| 154 | 151 152 153 | syl2anc |  |-  ( ph -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) | 
						
							| 155 | 147 154 | mpbid |  |-  ( ph -> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) | 
						
							| 156 | 155 | simprd |  |-  ( ph -> A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) | 
						
							| 157 | 156 | adantr |  |-  ( ( ph /\ -. D = B ) -> A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) | 
						
							| 158 | 35 | adantr |  |-  ( ( ph /\ -. D = B ) -> A e. RR* ) | 
						
							| 159 | 36 | adantr |  |-  ( ( ph /\ -. D = B ) -> B e. RR* ) | 
						
							| 160 | 7 | adantr |  |-  ( ( ph /\ -. D = B ) -> D e. RR ) | 
						
							| 161 | 1 6 7 63 8 | lelttrd |  |-  ( ph -> A < D ) | 
						
							| 162 | 161 | adantr |  |-  ( ( ph /\ -. D = B ) -> A < D ) | 
						
							| 163 | 2 | adantr |  |-  ( ( ph /\ -. D = B ) -> B e. RR ) | 
						
							| 164 | 62 | simprd |  |-  ( ph -> D <_ B ) | 
						
							| 165 | 164 | adantr |  |-  ( ( ph /\ -. D = B ) -> D <_ B ) | 
						
							| 166 |  | neqne |  |-  ( -. D = B -> D =/= B ) | 
						
							| 167 | 166 | necomd |  |-  ( -. D = B -> B =/= D ) | 
						
							| 168 | 167 | adantl |  |-  ( ( ph /\ -. D = B ) -> B =/= D ) | 
						
							| 169 | 160 163 165 168 | leneltd |  |-  ( ( ph /\ -. D = B ) -> D < B ) | 
						
							| 170 | 158 159 160 162 169 | eliood |  |-  ( ( ph /\ -. D = B ) -> D e. ( A (,) B ) ) | 
						
							| 171 |  | fveq2 |  |-  ( x = D -> ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` D ) ) | 
						
							| 172 | 171 | eleq2d |  |-  ( x = D -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` D ) ) ) | 
						
							| 173 | 172 | rspccva |  |-  ( ( A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) /\ D e. ( A (,) B ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` D ) ) | 
						
							| 174 | 157 170 173 | syl2anc |  |-  ( ( ph /\ -. D = B ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` D ) ) | 
						
							| 175 | 24 140 | cnplimc |  |-  ( ( ( A (,) B ) C_ CC /\ D e. ( A (,) B ) ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` D ) <-> ( F : ( A (,) B ) --> CC /\ ( F ` D ) e. ( F limCC D ) ) ) ) | 
						
							| 176 | 22 170 175 | sylancr |  |-  ( ( ph /\ -. D = B ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` D ) <-> ( F : ( A (,) B ) --> CC /\ ( F ` D ) e. ( F limCC D ) ) ) ) | 
						
							| 177 | 174 176 | mpbid |  |-  ( ( ph /\ -. D = B ) -> ( F : ( A (,) B ) --> CC /\ ( F ` D ) e. ( F limCC D ) ) ) | 
						
							| 178 | 177 | simprd |  |-  ( ( ph /\ -. D = B ) -> ( F ` D ) e. ( F limCC D ) ) | 
						
							| 179 | 137 178 | eqeltrd |  |-  ( ( ph /\ -. D = B ) -> Y e. ( F limCC D ) ) | 
						
							| 180 | 134 179 | sselid |  |-  ( ( ph /\ -. D = B ) -> Y e. ( ( F |` ( C (,) D ) ) limCC D ) ) | 
						
							| 181 | 133 180 | pm2.61dan |  |-  ( ph -> Y e. ( ( F |` ( C (,) D ) ) limCC D ) ) |