| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem34.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 2 |
|
fourierdlem34.m |
|- ( ph -> M e. NN ) |
| 3 |
|
fourierdlem34.q |
|- ( ph -> Q e. ( P ` M ) ) |
| 4 |
1
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 5 |
2 4
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 6 |
3 5
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
| 7 |
6
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
| 8 |
|
elmapi |
|- ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 9 |
7 8
|
syl |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 10 |
|
simplr |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` i ) = ( Q ` j ) ) /\ -. i = j ) -> ( Q ` i ) = ( Q ` j ) ) |
| 11 |
9
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( Q ` i ) e. RR ) |
| 13 |
9
|
ffvelcdmda |
|- ( ( ph /\ k e. ( 0 ... M ) ) -> ( Q ` k ) e. RR ) |
| 14 |
13
|
ad4ant14 |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < j ) /\ k e. ( 0 ... M ) ) -> ( Q ` k ) e. RR ) |
| 15 |
14
|
adantllr |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ k e. ( 0 ... M ) ) -> ( Q ` k ) e. RR ) |
| 16 |
|
eleq1w |
|- ( i = k -> ( i e. ( 0 ..^ M ) <-> k e. ( 0 ..^ M ) ) ) |
| 17 |
16
|
anbi2d |
|- ( i = k -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ k e. ( 0 ..^ M ) ) ) ) |
| 18 |
|
fveq2 |
|- ( i = k -> ( Q ` i ) = ( Q ` k ) ) |
| 19 |
|
oveq1 |
|- ( i = k -> ( i + 1 ) = ( k + 1 ) ) |
| 20 |
19
|
fveq2d |
|- ( i = k -> ( Q ` ( i + 1 ) ) = ( Q ` ( k + 1 ) ) ) |
| 21 |
18 20
|
breq12d |
|- ( i = k -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` k ) < ( Q ` ( k + 1 ) ) ) ) |
| 22 |
17 21
|
imbi12d |
|- ( i = k -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ k e. ( 0 ..^ M ) ) -> ( Q ` k ) < ( Q ` ( k + 1 ) ) ) ) ) |
| 23 |
6
|
simprrd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 24 |
23
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 25 |
22 24
|
chvarvv |
|- ( ( ph /\ k e. ( 0 ..^ M ) ) -> ( Q ` k ) < ( Q ` ( k + 1 ) ) ) |
| 26 |
25
|
ad4ant14 |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < j ) /\ k e. ( 0 ..^ M ) ) -> ( Q ` k ) < ( Q ` ( k + 1 ) ) ) |
| 27 |
26
|
adantllr |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ k e. ( 0 ..^ M ) ) -> ( Q ` k ) < ( Q ` ( k + 1 ) ) ) |
| 28 |
|
simpllr |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> i e. ( 0 ... M ) ) |
| 29 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> j e. ( 0 ... M ) ) |
| 30 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> i < j ) |
| 31 |
15 27 28 29 30
|
monoords |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( Q ` i ) < ( Q ` j ) ) |
| 32 |
12 31
|
ltned |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( Q ` i ) =/= ( Q ` j ) ) |
| 33 |
32
|
neneqd |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> -. ( Q ` i ) = ( Q ` j ) ) |
| 34 |
33
|
adantlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ i < j ) -> -. ( Q ` i ) = ( Q ` j ) ) |
| 35 |
|
simpll |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) ) |
| 36 |
|
elfzelz |
|- ( j e. ( 0 ... M ) -> j e. ZZ ) |
| 37 |
36
|
zred |
|- ( j e. ( 0 ... M ) -> j e. RR ) |
| 38 |
37
|
ad3antlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> j e. RR ) |
| 39 |
|
elfzelz |
|- ( i e. ( 0 ... M ) -> i e. ZZ ) |
| 40 |
39
|
zred |
|- ( i e. ( 0 ... M ) -> i e. RR ) |
| 41 |
40
|
ad4antlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> i e. RR ) |
| 42 |
|
neqne |
|- ( -. i = j -> i =/= j ) |
| 43 |
42
|
necomd |
|- ( -. i = j -> j =/= i ) |
| 44 |
43
|
ad2antlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> j =/= i ) |
| 45 |
|
simpr |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> -. i < j ) |
| 46 |
38 41 44 45
|
lttri5d |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> j < i ) |
| 47 |
9
|
ffvelcdmda |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR ) |
| 48 |
47
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ j < i ) -> ( Q ` j ) e. RR ) |
| 49 |
48
|
adantllr |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> ( Q ` j ) e. RR ) |
| 50 |
|
simp-4l |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) /\ k e. ( 0 ... M ) ) -> ph ) |
| 51 |
50 13
|
sylancom |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) /\ k e. ( 0 ... M ) ) -> ( Q ` k ) e. RR ) |
| 52 |
|
simp-4l |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) /\ k e. ( 0 ..^ M ) ) -> ph ) |
| 53 |
52 25
|
sylancom |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) /\ k e. ( 0 ..^ M ) ) -> ( Q ` k ) < ( Q ` ( k + 1 ) ) ) |
| 54 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> j e. ( 0 ... M ) ) |
| 55 |
|
simpllr |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> i e. ( 0 ... M ) ) |
| 56 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> j < i ) |
| 57 |
51 53 54 55 56
|
monoords |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> ( Q ` j ) < ( Q ` i ) ) |
| 58 |
49 57
|
gtned |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> ( Q ` i ) =/= ( Q ` j ) ) |
| 59 |
58
|
neneqd |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> -. ( Q ` i ) = ( Q ` j ) ) |
| 60 |
35 46 59
|
syl2anc |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> -. ( Q ` i ) = ( Q ` j ) ) |
| 61 |
34 60
|
pm2.61dan |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) -> -. ( Q ` i ) = ( Q ` j ) ) |
| 62 |
61
|
adantlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` i ) = ( Q ` j ) ) /\ -. i = j ) -> -. ( Q ` i ) = ( Q ` j ) ) |
| 63 |
10 62
|
condan |
|- ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` i ) = ( Q ` j ) ) -> i = j ) |
| 64 |
63
|
ex |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) -> ( ( Q ` i ) = ( Q ` j ) -> i = j ) ) |
| 65 |
64
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> A. j e. ( 0 ... M ) ( ( Q ` i ) = ( Q ` j ) -> i = j ) ) |
| 66 |
65
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ... M ) A. j e. ( 0 ... M ) ( ( Q ` i ) = ( Q ` j ) -> i = j ) ) |
| 67 |
|
dff13 |
|- ( Q : ( 0 ... M ) -1-1-> RR <-> ( Q : ( 0 ... M ) --> RR /\ A. i e. ( 0 ... M ) A. j e. ( 0 ... M ) ( ( Q ` i ) = ( Q ` j ) -> i = j ) ) ) |
| 68 |
9 66 67
|
sylanbrc |
|- ( ph -> Q : ( 0 ... M ) -1-1-> RR ) |