| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem35.a |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem35.b |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem35.altb |
|- ( ph -> A < B ) |
| 4 |
|
fourierdlem35.t |
|- T = ( B - A ) |
| 5 |
|
fourierdlem35.5 |
|- ( ph -> X e. RR ) |
| 6 |
|
fourierdlem35.i |
|- ( ph -> I e. ZZ ) |
| 7 |
|
fourierdlem35.j |
|- ( ph -> J e. ZZ ) |
| 8 |
|
fourierdlem35.iel |
|- ( ph -> ( X + ( I x. T ) ) e. ( A (,] B ) ) |
| 9 |
|
fourierdlem35.jel |
|- ( ph -> ( X + ( J x. T ) ) e. ( A (,] B ) ) |
| 10 |
|
neqne |
|- ( -. I = J -> I =/= J ) |
| 11 |
1
|
adantr |
|- ( ( ph /\ I < J ) -> A e. RR ) |
| 12 |
2
|
adantr |
|- ( ( ph /\ I < J ) -> B e. RR ) |
| 13 |
3
|
adantr |
|- ( ( ph /\ I < J ) -> A < B ) |
| 14 |
5
|
adantr |
|- ( ( ph /\ I < J ) -> X e. RR ) |
| 15 |
6
|
adantr |
|- ( ( ph /\ I < J ) -> I e. ZZ ) |
| 16 |
7
|
adantr |
|- ( ( ph /\ I < J ) -> J e. ZZ ) |
| 17 |
|
simpr |
|- ( ( ph /\ I < J ) -> I < J ) |
| 18 |
|
iocssicc |
|- ( A (,] B ) C_ ( A [,] B ) |
| 19 |
18 8
|
sselid |
|- ( ph -> ( X + ( I x. T ) ) e. ( A [,] B ) ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ I < J ) -> ( X + ( I x. T ) ) e. ( A [,] B ) ) |
| 21 |
18 9
|
sselid |
|- ( ph -> ( X + ( J x. T ) ) e. ( A [,] B ) ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ I < J ) -> ( X + ( J x. T ) ) e. ( A [,] B ) ) |
| 23 |
11 12 13 4 14 15 16 17 20 22
|
fourierdlem6 |
|- ( ( ph /\ I < J ) -> J = ( I + 1 ) ) |
| 24 |
23
|
orcd |
|- ( ( ph /\ I < J ) -> ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) |
| 25 |
24
|
adantlr |
|- ( ( ( ph /\ I =/= J ) /\ I < J ) -> ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) |
| 26 |
|
simpll |
|- ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> ph ) |
| 27 |
7
|
zred |
|- ( ph -> J e. RR ) |
| 28 |
26 27
|
syl |
|- ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> J e. RR ) |
| 29 |
6
|
zred |
|- ( ph -> I e. RR ) |
| 30 |
26 29
|
syl |
|- ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> I e. RR ) |
| 31 |
|
id |
|- ( I =/= J -> I =/= J ) |
| 32 |
31
|
necomd |
|- ( I =/= J -> J =/= I ) |
| 33 |
32
|
ad2antlr |
|- ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> J =/= I ) |
| 34 |
|
simpr |
|- ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> -. I < J ) |
| 35 |
28 30 33 34
|
lttri5d |
|- ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> J < I ) |
| 36 |
1
|
adantr |
|- ( ( ph /\ J < I ) -> A e. RR ) |
| 37 |
2
|
adantr |
|- ( ( ph /\ J < I ) -> B e. RR ) |
| 38 |
3
|
adantr |
|- ( ( ph /\ J < I ) -> A < B ) |
| 39 |
5
|
adantr |
|- ( ( ph /\ J < I ) -> X e. RR ) |
| 40 |
7
|
adantr |
|- ( ( ph /\ J < I ) -> J e. ZZ ) |
| 41 |
6
|
adantr |
|- ( ( ph /\ J < I ) -> I e. ZZ ) |
| 42 |
|
simpr |
|- ( ( ph /\ J < I ) -> J < I ) |
| 43 |
21
|
adantr |
|- ( ( ph /\ J < I ) -> ( X + ( J x. T ) ) e. ( A [,] B ) ) |
| 44 |
19
|
adantr |
|- ( ( ph /\ J < I ) -> ( X + ( I x. T ) ) e. ( A [,] B ) ) |
| 45 |
36 37 38 4 39 40 41 42 43 44
|
fourierdlem6 |
|- ( ( ph /\ J < I ) -> I = ( J + 1 ) ) |
| 46 |
45
|
olcd |
|- ( ( ph /\ J < I ) -> ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) |
| 47 |
26 35 46
|
syl2anc |
|- ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) |
| 48 |
25 47
|
pm2.61dan |
|- ( ( ph /\ I =/= J ) -> ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) |
| 49 |
10 48
|
sylan2 |
|- ( ( ph /\ -. I = J ) -> ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) |
| 50 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 51 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 52 |
|
iocleub |
|- ( ( A e. RR* /\ B e. RR* /\ ( X + ( J x. T ) ) e. ( A (,] B ) ) -> ( X + ( J x. T ) ) <_ B ) |
| 53 |
50 51 9 52
|
syl3anc |
|- ( ph -> ( X + ( J x. T ) ) <_ B ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ J = ( I + 1 ) ) -> ( X + ( J x. T ) ) <_ B ) |
| 55 |
1
|
adantr |
|- ( ( ph /\ J = ( I + 1 ) ) -> A e. RR ) |
| 56 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 57 |
4 56
|
eqeltrid |
|- ( ph -> T e. RR ) |
| 58 |
29 57
|
remulcld |
|- ( ph -> ( I x. T ) e. RR ) |
| 59 |
5 58
|
readdcld |
|- ( ph -> ( X + ( I x. T ) ) e. RR ) |
| 60 |
59
|
adantr |
|- ( ( ph /\ J = ( I + 1 ) ) -> ( X + ( I x. T ) ) e. RR ) |
| 61 |
57
|
adantr |
|- ( ( ph /\ J = ( I + 1 ) ) -> T e. RR ) |
| 62 |
|
iocgtlb |
|- ( ( A e. RR* /\ B e. RR* /\ ( X + ( I x. T ) ) e. ( A (,] B ) ) -> A < ( X + ( I x. T ) ) ) |
| 63 |
50 51 8 62
|
syl3anc |
|- ( ph -> A < ( X + ( I x. T ) ) ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ J = ( I + 1 ) ) -> A < ( X + ( I x. T ) ) ) |
| 65 |
55 60 61 64
|
ltadd1dd |
|- ( ( ph /\ J = ( I + 1 ) ) -> ( A + T ) < ( ( X + ( I x. T ) ) + T ) ) |
| 66 |
4
|
eqcomi |
|- ( B - A ) = T |
| 67 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 68 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 69 |
57
|
recnd |
|- ( ph -> T e. CC ) |
| 70 |
67 68 69
|
subaddd |
|- ( ph -> ( ( B - A ) = T <-> ( A + T ) = B ) ) |
| 71 |
66 70
|
mpbii |
|- ( ph -> ( A + T ) = B ) |
| 72 |
71
|
eqcomd |
|- ( ph -> B = ( A + T ) ) |
| 73 |
72
|
adantr |
|- ( ( ph /\ J = ( I + 1 ) ) -> B = ( A + T ) ) |
| 74 |
5
|
recnd |
|- ( ph -> X e. CC ) |
| 75 |
58
|
recnd |
|- ( ph -> ( I x. T ) e. CC ) |
| 76 |
74 75 69
|
addassd |
|- ( ph -> ( ( X + ( I x. T ) ) + T ) = ( X + ( ( I x. T ) + T ) ) ) |
| 77 |
76
|
adantr |
|- ( ( ph /\ J = ( I + 1 ) ) -> ( ( X + ( I x. T ) ) + T ) = ( X + ( ( I x. T ) + T ) ) ) |
| 78 |
29
|
recnd |
|- ( ph -> I e. CC ) |
| 79 |
78 69
|
adddirp1d |
|- ( ph -> ( ( I + 1 ) x. T ) = ( ( I x. T ) + T ) ) |
| 80 |
79
|
eqcomd |
|- ( ph -> ( ( I x. T ) + T ) = ( ( I + 1 ) x. T ) ) |
| 81 |
80
|
oveq2d |
|- ( ph -> ( X + ( ( I x. T ) + T ) ) = ( X + ( ( I + 1 ) x. T ) ) ) |
| 82 |
81
|
adantr |
|- ( ( ph /\ J = ( I + 1 ) ) -> ( X + ( ( I x. T ) + T ) ) = ( X + ( ( I + 1 ) x. T ) ) ) |
| 83 |
|
oveq1 |
|- ( J = ( I + 1 ) -> ( J x. T ) = ( ( I + 1 ) x. T ) ) |
| 84 |
83
|
eqcomd |
|- ( J = ( I + 1 ) -> ( ( I + 1 ) x. T ) = ( J x. T ) ) |
| 85 |
84
|
oveq2d |
|- ( J = ( I + 1 ) -> ( X + ( ( I + 1 ) x. T ) ) = ( X + ( J x. T ) ) ) |
| 86 |
85
|
adantl |
|- ( ( ph /\ J = ( I + 1 ) ) -> ( X + ( ( I + 1 ) x. T ) ) = ( X + ( J x. T ) ) ) |
| 87 |
77 82 86
|
3eqtrrd |
|- ( ( ph /\ J = ( I + 1 ) ) -> ( X + ( J x. T ) ) = ( ( X + ( I x. T ) ) + T ) ) |
| 88 |
65 73 87
|
3brtr4d |
|- ( ( ph /\ J = ( I + 1 ) ) -> B < ( X + ( J x. T ) ) ) |
| 89 |
2
|
adantr |
|- ( ( ph /\ J = ( I + 1 ) ) -> B e. RR ) |
| 90 |
27 57
|
remulcld |
|- ( ph -> ( J x. T ) e. RR ) |
| 91 |
5 90
|
readdcld |
|- ( ph -> ( X + ( J x. T ) ) e. RR ) |
| 92 |
91
|
adantr |
|- ( ( ph /\ J = ( I + 1 ) ) -> ( X + ( J x. T ) ) e. RR ) |
| 93 |
89 92
|
ltnled |
|- ( ( ph /\ J = ( I + 1 ) ) -> ( B < ( X + ( J x. T ) ) <-> -. ( X + ( J x. T ) ) <_ B ) ) |
| 94 |
88 93
|
mpbid |
|- ( ( ph /\ J = ( I + 1 ) ) -> -. ( X + ( J x. T ) ) <_ B ) |
| 95 |
54 94
|
pm2.65da |
|- ( ph -> -. J = ( I + 1 ) ) |
| 96 |
|
iocleub |
|- ( ( A e. RR* /\ B e. RR* /\ ( X + ( I x. T ) ) e. ( A (,] B ) ) -> ( X + ( I x. T ) ) <_ B ) |
| 97 |
50 51 8 96
|
syl3anc |
|- ( ph -> ( X + ( I x. T ) ) <_ B ) |
| 98 |
97
|
adantr |
|- ( ( ph /\ I = ( J + 1 ) ) -> ( X + ( I x. T ) ) <_ B ) |
| 99 |
1
|
adantr |
|- ( ( ph /\ I = ( J + 1 ) ) -> A e. RR ) |
| 100 |
91
|
adantr |
|- ( ( ph /\ I = ( J + 1 ) ) -> ( X + ( J x. T ) ) e. RR ) |
| 101 |
57
|
adantr |
|- ( ( ph /\ I = ( J + 1 ) ) -> T e. RR ) |
| 102 |
|
iocgtlb |
|- ( ( A e. RR* /\ B e. RR* /\ ( X + ( J x. T ) ) e. ( A (,] B ) ) -> A < ( X + ( J x. T ) ) ) |
| 103 |
50 51 9 102
|
syl3anc |
|- ( ph -> A < ( X + ( J x. T ) ) ) |
| 104 |
103
|
adantr |
|- ( ( ph /\ I = ( J + 1 ) ) -> A < ( X + ( J x. T ) ) ) |
| 105 |
99 100 101 104
|
ltadd1dd |
|- ( ( ph /\ I = ( J + 1 ) ) -> ( A + T ) < ( ( X + ( J x. T ) ) + T ) ) |
| 106 |
72
|
adantr |
|- ( ( ph /\ I = ( J + 1 ) ) -> B = ( A + T ) ) |
| 107 |
90
|
recnd |
|- ( ph -> ( J x. T ) e. CC ) |
| 108 |
74 107 69
|
addassd |
|- ( ph -> ( ( X + ( J x. T ) ) + T ) = ( X + ( ( J x. T ) + T ) ) ) |
| 109 |
108
|
adantr |
|- ( ( ph /\ I = ( J + 1 ) ) -> ( ( X + ( J x. T ) ) + T ) = ( X + ( ( J x. T ) + T ) ) ) |
| 110 |
27
|
recnd |
|- ( ph -> J e. CC ) |
| 111 |
110 69
|
adddirp1d |
|- ( ph -> ( ( J + 1 ) x. T ) = ( ( J x. T ) + T ) ) |
| 112 |
111
|
eqcomd |
|- ( ph -> ( ( J x. T ) + T ) = ( ( J + 1 ) x. T ) ) |
| 113 |
112
|
oveq2d |
|- ( ph -> ( X + ( ( J x. T ) + T ) ) = ( X + ( ( J + 1 ) x. T ) ) ) |
| 114 |
113
|
adantr |
|- ( ( ph /\ I = ( J + 1 ) ) -> ( X + ( ( J x. T ) + T ) ) = ( X + ( ( J + 1 ) x. T ) ) ) |
| 115 |
|
oveq1 |
|- ( I = ( J + 1 ) -> ( I x. T ) = ( ( J + 1 ) x. T ) ) |
| 116 |
115
|
eqcomd |
|- ( I = ( J + 1 ) -> ( ( J + 1 ) x. T ) = ( I x. T ) ) |
| 117 |
116
|
oveq2d |
|- ( I = ( J + 1 ) -> ( X + ( ( J + 1 ) x. T ) ) = ( X + ( I x. T ) ) ) |
| 118 |
117
|
adantl |
|- ( ( ph /\ I = ( J + 1 ) ) -> ( X + ( ( J + 1 ) x. T ) ) = ( X + ( I x. T ) ) ) |
| 119 |
109 114 118
|
3eqtrrd |
|- ( ( ph /\ I = ( J + 1 ) ) -> ( X + ( I x. T ) ) = ( ( X + ( J x. T ) ) + T ) ) |
| 120 |
105 106 119
|
3brtr4d |
|- ( ( ph /\ I = ( J + 1 ) ) -> B < ( X + ( I x. T ) ) ) |
| 121 |
2
|
adantr |
|- ( ( ph /\ I = ( J + 1 ) ) -> B e. RR ) |
| 122 |
59
|
adantr |
|- ( ( ph /\ I = ( J + 1 ) ) -> ( X + ( I x. T ) ) e. RR ) |
| 123 |
121 122
|
ltnled |
|- ( ( ph /\ I = ( J + 1 ) ) -> ( B < ( X + ( I x. T ) ) <-> -. ( X + ( I x. T ) ) <_ B ) ) |
| 124 |
120 123
|
mpbid |
|- ( ( ph /\ I = ( J + 1 ) ) -> -. ( X + ( I x. T ) ) <_ B ) |
| 125 |
98 124
|
pm2.65da |
|- ( ph -> -. I = ( J + 1 ) ) |
| 126 |
95 125
|
jca |
|- ( ph -> ( -. J = ( I + 1 ) /\ -. I = ( J + 1 ) ) ) |
| 127 |
126
|
adantr |
|- ( ( ph /\ -. I = J ) -> ( -. J = ( I + 1 ) /\ -. I = ( J + 1 ) ) ) |
| 128 |
|
pm4.56 |
|- ( ( -. J = ( I + 1 ) /\ -. I = ( J + 1 ) ) <-> -. ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) |
| 129 |
127 128
|
sylib |
|- ( ( ph /\ -. I = J ) -> -. ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) |
| 130 |
49 129
|
condan |
|- ( ph -> I = J ) |