| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem35.a |
|
| 2 |
|
fourierdlem35.b |
|
| 3 |
|
fourierdlem35.altb |
|
| 4 |
|
fourierdlem35.t |
|
| 5 |
|
fourierdlem35.5 |
|
| 6 |
|
fourierdlem35.i |
|
| 7 |
|
fourierdlem35.j |
|
| 8 |
|
fourierdlem35.iel |
|
| 9 |
|
fourierdlem35.jel |
|
| 10 |
|
neqne |
|
| 11 |
1
|
adantr |
|
| 12 |
2
|
adantr |
|
| 13 |
3
|
adantr |
|
| 14 |
5
|
adantr |
|
| 15 |
6
|
adantr |
|
| 16 |
7
|
adantr |
|
| 17 |
|
simpr |
|
| 18 |
|
iocssicc |
|
| 19 |
18 8
|
sselid |
|
| 20 |
19
|
adantr |
|
| 21 |
18 9
|
sselid |
|
| 22 |
21
|
adantr |
|
| 23 |
11 12 13 4 14 15 16 17 20 22
|
fourierdlem6 |
|
| 24 |
23
|
orcd |
|
| 25 |
24
|
adantlr |
|
| 26 |
|
simpll |
|
| 27 |
7
|
zred |
|
| 28 |
26 27
|
syl |
|
| 29 |
6
|
zred |
|
| 30 |
26 29
|
syl |
|
| 31 |
|
id |
|
| 32 |
31
|
necomd |
|
| 33 |
32
|
ad2antlr |
|
| 34 |
|
simpr |
|
| 35 |
28 30 33 34
|
lttri5d |
|
| 36 |
1
|
adantr |
|
| 37 |
2
|
adantr |
|
| 38 |
3
|
adantr |
|
| 39 |
5
|
adantr |
|
| 40 |
7
|
adantr |
|
| 41 |
6
|
adantr |
|
| 42 |
|
simpr |
|
| 43 |
21
|
adantr |
|
| 44 |
19
|
adantr |
|
| 45 |
36 37 38 4 39 40 41 42 43 44
|
fourierdlem6 |
|
| 46 |
45
|
olcd |
|
| 47 |
26 35 46
|
syl2anc |
|
| 48 |
25 47
|
pm2.61dan |
|
| 49 |
10 48
|
sylan2 |
|
| 50 |
1
|
rexrd |
|
| 51 |
2
|
rexrd |
|
| 52 |
|
iocleub |
|
| 53 |
50 51 9 52
|
syl3anc |
|
| 54 |
53
|
adantr |
|
| 55 |
1
|
adantr |
|
| 56 |
2 1
|
resubcld |
|
| 57 |
4 56
|
eqeltrid |
|
| 58 |
29 57
|
remulcld |
|
| 59 |
5 58
|
readdcld |
|
| 60 |
59
|
adantr |
|
| 61 |
57
|
adantr |
|
| 62 |
|
iocgtlb |
|
| 63 |
50 51 8 62
|
syl3anc |
|
| 64 |
63
|
adantr |
|
| 65 |
55 60 61 64
|
ltadd1dd |
|
| 66 |
4
|
eqcomi |
|
| 67 |
2
|
recnd |
|
| 68 |
1
|
recnd |
|
| 69 |
57
|
recnd |
|
| 70 |
67 68 69
|
subaddd |
|
| 71 |
66 70
|
mpbii |
|
| 72 |
71
|
eqcomd |
|
| 73 |
72
|
adantr |
|
| 74 |
5
|
recnd |
|
| 75 |
58
|
recnd |
|
| 76 |
74 75 69
|
addassd |
|
| 77 |
76
|
adantr |
|
| 78 |
29
|
recnd |
|
| 79 |
78 69
|
adddirp1d |
|
| 80 |
79
|
eqcomd |
|
| 81 |
80
|
oveq2d |
|
| 82 |
81
|
adantr |
|
| 83 |
|
oveq1 |
|
| 84 |
83
|
eqcomd |
|
| 85 |
84
|
oveq2d |
|
| 86 |
85
|
adantl |
|
| 87 |
77 82 86
|
3eqtrrd |
|
| 88 |
65 73 87
|
3brtr4d |
|
| 89 |
2
|
adantr |
|
| 90 |
27 57
|
remulcld |
|
| 91 |
5 90
|
readdcld |
|
| 92 |
91
|
adantr |
|
| 93 |
89 92
|
ltnled |
|
| 94 |
88 93
|
mpbid |
|
| 95 |
54 94
|
pm2.65da |
|
| 96 |
|
iocleub |
|
| 97 |
50 51 8 96
|
syl3anc |
|
| 98 |
97
|
adantr |
|
| 99 |
1
|
adantr |
|
| 100 |
91
|
adantr |
|
| 101 |
57
|
adantr |
|
| 102 |
|
iocgtlb |
|
| 103 |
50 51 9 102
|
syl3anc |
|
| 104 |
103
|
adantr |
|
| 105 |
99 100 101 104
|
ltadd1dd |
|
| 106 |
72
|
adantr |
|
| 107 |
90
|
recnd |
|
| 108 |
74 107 69
|
addassd |
|
| 109 |
108
|
adantr |
|
| 110 |
27
|
recnd |
|
| 111 |
110 69
|
adddirp1d |
|
| 112 |
111
|
eqcomd |
|
| 113 |
112
|
oveq2d |
|
| 114 |
113
|
adantr |
|
| 115 |
|
oveq1 |
|
| 116 |
115
|
eqcomd |
|
| 117 |
116
|
oveq2d |
|
| 118 |
117
|
adantl |
|
| 119 |
109 114 118
|
3eqtrrd |
|
| 120 |
105 106 119
|
3brtr4d |
|
| 121 |
2
|
adantr |
|
| 122 |
59
|
adantr |
|
| 123 |
121 122
|
ltnled |
|
| 124 |
120 123
|
mpbid |
|
| 125 |
98 124
|
pm2.65da |
|
| 126 |
95 125
|
jca |
|
| 127 |
126
|
adantr |
|
| 128 |
|
pm4.56 |
|
| 129 |
127 128
|
sylib |
|
| 130 |
49 129
|
condan |
|