Metamath Proof Explorer


Theorem fourierdlem35

Description: There is a single point in ( A (,] B ) that's distant from X a multiple integer of T . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem35.a φA
fourierdlem35.b φB
fourierdlem35.altb φA<B
fourierdlem35.t T=BA
fourierdlem35.5 φX
fourierdlem35.i φI
fourierdlem35.j φJ
fourierdlem35.iel φX+ITAB
fourierdlem35.jel φX+JTAB
Assertion fourierdlem35 φI=J

Proof

Step Hyp Ref Expression
1 fourierdlem35.a φA
2 fourierdlem35.b φB
3 fourierdlem35.altb φA<B
4 fourierdlem35.t T=BA
5 fourierdlem35.5 φX
6 fourierdlem35.i φI
7 fourierdlem35.j φJ
8 fourierdlem35.iel φX+ITAB
9 fourierdlem35.jel φX+JTAB
10 neqne ¬I=JIJ
11 1 adantr φI<JA
12 2 adantr φI<JB
13 3 adantr φI<JA<B
14 5 adantr φI<JX
15 6 adantr φI<JI
16 7 adantr φI<JJ
17 simpr φI<JI<J
18 iocssicc ABAB
19 18 8 sselid φX+ITAB
20 19 adantr φI<JX+ITAB
21 18 9 sselid φX+JTAB
22 21 adantr φI<JX+JTAB
23 11 12 13 4 14 15 16 17 20 22 fourierdlem6 φI<JJ=I+1
24 23 orcd φI<JJ=I+1I=J+1
25 24 adantlr φIJI<JJ=I+1I=J+1
26 simpll φIJ¬I<Jφ
27 7 zred φJ
28 26 27 syl φIJ¬I<JJ
29 6 zred φI
30 26 29 syl φIJ¬I<JI
31 id IJIJ
32 31 necomd IJJI
33 32 ad2antlr φIJ¬I<JJI
34 simpr φIJ¬I<J¬I<J
35 28 30 33 34 lttri5d φIJ¬I<JJ<I
36 1 adantr φJ<IA
37 2 adantr φJ<IB
38 3 adantr φJ<IA<B
39 5 adantr φJ<IX
40 7 adantr φJ<IJ
41 6 adantr φJ<II
42 simpr φJ<IJ<I
43 21 adantr φJ<IX+JTAB
44 19 adantr φJ<IX+ITAB
45 36 37 38 4 39 40 41 42 43 44 fourierdlem6 φJ<II=J+1
46 45 olcd φJ<IJ=I+1I=J+1
47 26 35 46 syl2anc φIJ¬I<JJ=I+1I=J+1
48 25 47 pm2.61dan φIJJ=I+1I=J+1
49 10 48 sylan2 φ¬I=JJ=I+1I=J+1
50 1 rexrd φA*
51 2 rexrd φB*
52 iocleub A*B*X+JTABX+JTB
53 50 51 9 52 syl3anc φX+JTB
54 53 adantr φJ=I+1X+JTB
55 1 adantr φJ=I+1A
56 2 1 resubcld φBA
57 4 56 eqeltrid φT
58 29 57 remulcld φIT
59 5 58 readdcld φX+IT
60 59 adantr φJ=I+1X+IT
61 57 adantr φJ=I+1T
62 iocgtlb A*B*X+ITABA<X+IT
63 50 51 8 62 syl3anc φA<X+IT
64 63 adantr φJ=I+1A<X+IT
65 55 60 61 64 ltadd1dd φJ=I+1A+T<X+IT+T
66 4 eqcomi BA=T
67 2 recnd φB
68 1 recnd φA
69 57 recnd φT
70 67 68 69 subaddd φBA=TA+T=B
71 66 70 mpbii φA+T=B
72 71 eqcomd φB=A+T
73 72 adantr φJ=I+1B=A+T
74 5 recnd φX
75 58 recnd φIT
76 74 75 69 addassd φX+IT+T=X+IT+T
77 76 adantr φJ=I+1X+IT+T=X+IT+T
78 29 recnd φI
79 78 69 adddirp1d φI+1T=IT+T
80 79 eqcomd φIT+T=I+1T
81 80 oveq2d φX+IT+T=X+I+1T
82 81 adantr φJ=I+1X+IT+T=X+I+1T
83 oveq1 J=I+1JT=I+1T
84 83 eqcomd J=I+1I+1T=JT
85 84 oveq2d J=I+1X+I+1T=X+JT
86 85 adantl φJ=I+1X+I+1T=X+JT
87 77 82 86 3eqtrrd φJ=I+1X+JT=X+IT+T
88 65 73 87 3brtr4d φJ=I+1B<X+JT
89 2 adantr φJ=I+1B
90 27 57 remulcld φJT
91 5 90 readdcld φX+JT
92 91 adantr φJ=I+1X+JT
93 89 92 ltnled φJ=I+1B<X+JT¬X+JTB
94 88 93 mpbid φJ=I+1¬X+JTB
95 54 94 pm2.65da φ¬J=I+1
96 iocleub A*B*X+ITABX+ITB
97 50 51 8 96 syl3anc φX+ITB
98 97 adantr φI=J+1X+ITB
99 1 adantr φI=J+1A
100 91 adantr φI=J+1X+JT
101 57 adantr φI=J+1T
102 iocgtlb A*B*X+JTABA<X+JT
103 50 51 9 102 syl3anc φA<X+JT
104 103 adantr φI=J+1A<X+JT
105 99 100 101 104 ltadd1dd φI=J+1A+T<X+JT+T
106 72 adantr φI=J+1B=A+T
107 90 recnd φJT
108 74 107 69 addassd φX+JT+T=X+JT+T
109 108 adantr φI=J+1X+JT+T=X+JT+T
110 27 recnd φJ
111 110 69 adddirp1d φJ+1T=JT+T
112 111 eqcomd φJT+T=J+1T
113 112 oveq2d φX+JT+T=X+J+1T
114 113 adantr φI=J+1X+JT+T=X+J+1T
115 oveq1 I=J+1IT=J+1T
116 115 eqcomd I=J+1J+1T=IT
117 116 oveq2d I=J+1X+J+1T=X+IT
118 117 adantl φI=J+1X+J+1T=X+IT
119 109 114 118 3eqtrrd φI=J+1X+IT=X+JT+T
120 105 106 119 3brtr4d φI=J+1B<X+IT
121 2 adantr φI=J+1B
122 59 adantr φI=J+1X+IT
123 121 122 ltnled φI=J+1B<X+IT¬X+ITB
124 120 123 mpbid φI=J+1¬X+ITB
125 98 124 pm2.65da φ¬I=J+1
126 95 125 jca φ¬J=I+1¬I=J+1
127 126 adantr φ¬I=J¬J=I+1¬I=J+1
128 pm4.56 ¬J=I+1¬I=J+1¬J=I+1I=J+1
129 127 128 sylib φ¬I=J¬J=I+1I=J+1
130 49 129 condan φI=J