Metamath Proof Explorer


Theorem fourierdlem6

Description: X is in the periodic partition, when the considered interval is centered at X . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem6.a φA
fourierdlem6.b φB
fourierdlem6.altb φA<B
fourierdlem6.t T=BA
fourierdlem6.5 φX
fourierdlem6.i φI
fourierdlem6.j φJ
fourierdlem6.iltj φI<J
fourierdlem6.iel φX+ITAB
fourierdlem6.jel φX+JTAB
Assertion fourierdlem6 φJ=I+1

Proof

Step Hyp Ref Expression
1 fourierdlem6.a φA
2 fourierdlem6.b φB
3 fourierdlem6.altb φA<B
4 fourierdlem6.t T=BA
5 fourierdlem6.5 φX
6 fourierdlem6.i φI
7 fourierdlem6.j φJ
8 fourierdlem6.iltj φI<J
9 fourierdlem6.iel φX+ITAB
10 fourierdlem6.jel φX+JTAB
11 7 zred φJ
12 6 zred φI
13 11 12 resubcld φJI
14 2 1 resubcld φBA
15 4 14 eqeltrid φT
16 13 15 remulcld φJIT
17 1 2 posdifd φA<B0<BA
18 3 17 mpbid φ0<BA
19 18 4 breqtrrdi φ0<T
20 15 19 elrpd φT+
21 1 2 10 9 iccsuble φX+JT-X+ITBA
22 11 recnd φJ
23 12 recnd φI
24 15 recnd φT
25 22 23 24 subdird φJIT=JTIT
26 5 recnd φX
27 11 15 remulcld φJT
28 27 recnd φJT
29 12 15 remulcld φIT
30 29 recnd φIT
31 26 28 30 pnpcand φX+JT-X+IT=JTIT
32 25 31 eqtr4d φJIT=X+JT-X+IT
33 4 a1i φT=BA
34 21 32 33 3brtr4d φJITT
35 16 15 20 34 lediv1dd φJITTTT
36 13 recnd φJI
37 19 gt0ne0d φT0
38 36 24 37 divcan4d φJITT=JI
39 24 37 dividd φTT=1
40 35 38 39 3brtr3d φJI1
41 1red φ1
42 11 12 41 lesubadd2d φJI1JI+1
43 40 42 mpbid φJI+1
44 zltp1le IJI<JI+1J
45 6 7 44 syl2anc φI<JI+1J
46 8 45 mpbid φI+1J
47 12 41 readdcld φI+1
48 11 47 letri3d φJ=I+1JI+1I+1J
49 43 46 48 mpbir2and φJ=I+1